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Preface

Crucial to the development of a protostar and active for most of the pre-main
sequence phase, the mass outflow phenomenon is the most spectacular mani-
festation of star formation. The generation of jets from young stars involves a
complex interplay, still poorly understood, between gravity, turbulence, and
magnetic forces that may have important implications on the removal of ex-
cess angular momentum from the star-disk system as well as on conditions
for planet formation. These jets also create shocks and ionization fronts that
propagate into the surrounding medium, thereby providing feedback that can
affect both the cloud structure and chemistry, how the cloud evolves, and
hence the future generation of young stars. An ultimate understanding of jets
from young stars, their generation, and interaction with their parent cloud is
a vital part of any unified theory of Star Formation.

The motivation of the four-year JETSET (Jet Simulations Experiments
and Theory) Marie Curie Research Training Network is to build an interdis-
ciplinary European research and training community focused on the study of
jets from young stars, at the confluence of astrophysical observations, theoret-
ical and computational modelling, laboratory experiments and Grid technol-
ogy. The network scientific goals will focus on understanding (i) the driving
mechanisms of jets around young stars; (ii) the cooling–heating processes, in-
stabilities and shock structures in stellar and laboratory jets; and (iii) the
impact of jets on energy balance and star formation in the galactic medium.
Important to these overall goals are the series of JETSET schools dedicated
to the training of our young researchers in key jet topics.

This book is a collection of the lectures from our first school, Jets From
Young Stars: Models and Constraints, held in Villard de Lans France in
January 2006. Central to our understanding of jets is the identification of
the launching and collimation mechanisms. The strong correlation of accre-
tion and ejection signatures together with the high ejection efficiencies and
small collimation scales observed have led to the identification of magneto-
centrifugal processes as the main jet driving agent. The aim of the first
JETSET school is to provide a solid background in magneto-hydrodynamic
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(MHD) steady jet models as well as a good knowledge of the overall jet
observational properties supporting them.

The schools to follow will tackle the following key issues. The second JET-
SET school, hosted by the Florence node, will review modern high-angular
resolution observational techniques, which have allowed us to resolve the jet
launching region (within 100 AU of the protostar). The third JETSET school
(Torino) will be devoted to numerical simulation techniques, a key tool to
study the complex interaction of the jet with its surroundings as well as jet
instabilities. The 4th JETSET school (Porto) will deal with plasma diag-
nostics and heating/cooling processes, crucial ingredients to link constraints
brought by observations/experiments to model predictions/simulations. The
fifth and last JETSET school (Dublin) will introduce students to-state-
of-the-art computing grid technology and its application to large-scale jet
simulations. In particular the results of the numerical simulations of jets,
which are beyond the scope of this first book, will be discussed at the
Dublin school.

The book is structured as follows. The first half is devoted to general obser-
vational constraints, starting with a presentation of the outflow phenomenon
in young stars by Tom Ray. Sylvie Cabrit then reviews arguments that have
led us to identity magneto-centrifugal processes as the main jet driving mech-
anism. Finally, our current understanding of the star-disc magnetic interac-
tion, critical to both the accretion and outflow processes, is presented by Silvia
Alencar. The second half of the book reviews theoretical knowledge of MHD
processes pertinent to the jet launching mechanism in young stars. Guy Pel-
letier provides a general introduction to magneto-hydrodynamics, including
its validity conditions and a brief overview of the reconnection process. Car-
oline Terquem’s contribution details the physics of Standard Accretion Discs.
Although such disc models do not produce jets, they provide a description
of the observed accretion phenomenon, which relies also on MHD processes.
Then, Kanaris Tsinganos introduces the physics of steady-state MHD out-
flows, from the basic concepts and equations to modern self-similar solutions.
The next three lectures detail the various classes of steady magnetic wind
models currently discussed in the context of protostellar jets: Thibaut Lery
introduces the transit flow model, aimed at explaining the large molecular
ouflows observed in the early stages of star formation and briefly discusses
asymptotic jet equilibria. Jonathan Ferreira’s lecture covers the physics of Jet
Emitting Discs and their related jets, usually referred to in the literature as
disc-winds or X-winds. Finally, Christophe Sauty introduces the main prop-
erties of stellar winds.

The editors would like to thank all the lecturers for their excellent presen-
tations and contributions to this book. We are also thankful to all school par-
ticipants who brought a studious but very enjoyable atmosphere to the week
in Villard. Last but not least, we would like to acknowledge the huge amount
of work done by Sandrine Vignon, Richard Mourey, and Claudio Zanni, who
helped us in the organization of this school. Many thanks also to Eileen Flood
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who, together with Sandrine, cheerfully managed all practical aspects during
the week, including getting the sky shoe size from 80 eager participants at
coffee break ...

Dublin Institute for Advanced Studies Emma Whelan
Laboratoire d’Astrophysique de Grenoble Catherine Dougados
June, 2006 Jonathan Ferreira
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The First Three Million Years

Tom Ray

School of Cosmic Physics, Dublin Institute for Advanced Studies, 5 Merrion
Square, Dublin 2, Ireland
tr@cp.dias.ie

1 In the Beginning

In Mark Twain’s The Adventures of Huckleberry Finn there is a passage where
Huck is describing his trip down the Mississippi by raft with Jim and he says
“We had the sky up there, all speckled with stars, and we used to lay on
our backs and look up at them, and discuss about whether they was made or
only just happened”. Well of course we know they are made but how? That
is a question that has endured for many hundreds if not thousands of years.
Modern ideas on the subject could be said to have begun with two gentlemen:
Immanuel Kant and Pierre Simon Laplace. Immanuel Kant (Fig. 1) was born

T. Ray: The First Three Million Years, Lect. Notes Phys. 723, 3–19 (2007)

DOI 10.1007/978-3-540-68035-2 1 c© Springer-Verlag Berlin Heidelberg 2007



4 T. Ray

Fig. 1. Immanuel Kant was the first to propose the nebular hypothesis for the
formation of the Sun and planets, a theory that was later developed mathematically
by Laplace. It would be over two hundred years before his ideas could be verified

in 1724 in modern day Kaliningrad, Russia. At that time however the city was
within East Prussia and known as Königsberg. Although we remember Kant
today as one of the founders of modern philosophy, he also had a passionate
interest in Nature, and Astronomy in particular. He read for example Newton’s
Principia and studied the effects of the tides on the Earth’s rotation. In 1755,
Kant published his famous book Allgemeine Naturgeschichte und Theorie des
Himmels (Universal Natural History and Theory of the Heavens) in which he
expounded the nebular hypothesis. He proposed that the Solar System formed
from a collapsing cloud of gas. As it collapsed, he suggested, it would spin-up
and flatten into a disk. The central region formed the Sun, and the left-over
material in the disk the planets. Kant was not a mathematician, and it was
some years later before Pierre Simon Laplace, born in 1749 in Normandy,
gave the theory a mathematical basis in his Exposition de système du monde
in 1796. There was however a fundamental difference between Laplace’s and
Kant’s models: Laplace thought that the planets formed from the centrifugal
ejection of rings of excess matter as the Sun condensed. In contrast Kant
suggested the planets formed directly out of the swirling gas. Modern ideas,
as we shall see, are thus more in line with Kant than Laplace.

Much of the early part of the twentieth century was devoted to under-
standing how stars actually work (the great battles, for example of Eddington
and Jeans) rather than how they form. In the nineteenth century however
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Lord Kelvin (then William Thomson) and Hermann von Helmholtz estimated,
using the then modern Theory of Thermodynamics, how long the Sun would
shine using its thermal energy reservoir alone. The result is well known, i.e.
a few million years, a period known as the Kelvin-Helmholtz timescale. This
timescale contrasted sharply with the age of the Earth as estimated from
geological studies. In due course this disparity would lead to the idea that
the Sun, and other stars, shone through nuclear fusion rather than through
gravitational contraction. The concept of the Kelvin-Helmholz timescale is
of course still useful, at least, to star formation studies, since it corresponds
approximately, and for obvious reasons, to the time it takes a star to form
from a collapsing core within a molecular cloud.

The discovery of molecular clouds can, in a sense, be traced back to the
18th century. In the Spring of 1784 William Herschel was counting the stars in
various parts of the sky using his giant telescope. His sister Caroline patiently
took notes by his side. At one point during the night, William turned to
Caroline and said “Hier ist wahrhaftig ein Loch im Himmel!” (Here is certainly
a hole in the Heavens!) The dark nebulae, or molecular clouds as we prefer
to call them had been discovered. Herschel did not attach much significance
to his finding, believing he had discovered nothing more than an actual gap
in the stars. In contrast Caroline thought more of it and went on, with the
assistance of her nephew John Herschel, to compile the first catalogue of dark
nebulae many years later.

The realisation that dark nebulae in the Milky Way, such as the Coalsack,
were not actual holes in the distribution of stars, but instead regions blocking
our view of the stars beyond, did not come until the early part of the twentieth
century. Studies by astronomers, such as Edward Barnard at Lick Observatory
[9] and Max Wolf [52] in Heidelberg, showed them to be true astronomical
objects. Later in the twentieth century, Bart Bok found a number of dark
globules, which now bear his name, near HII regions. He suggested, in a paper
published in Astrophysical Journal in 1947 with E.F. Reilly [11], that these
globules were in the process of collapsing to form stars.

Around the same time Alfred Joy [21] discovered a whole new class of
irregular variable stars which we now refer to as T Tauri stars. Despite their
association with the dark nebulae, Joy did not realise their significance to
star formation. Instead this was left to Viktor Ambartsumian in 1947 [1].
In the 1950s and 1960s, Chushiro Hayashi developed models for the evolution
of pre-main sequence stars in the Hertzprung Russell diagram. He was the first
to realize that low mass stars follow almost exclusively convective tracks onto
the main sequence [26]. Along such a track, the surface temperature remains
almost constant as the radius, and hence the luminosity, decreases.

In closing this historical introduction, it is worth reiterating that the basic
model of how stars and planets form has been with us for many years. The
difficulty however has been in testing it. Even up until fairly recent times, it
was seriously suggested that the planets in the Solar System arose when the
Sun had a strong gravitational encounter with another star. Of course this
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theory can be easily dismissed: such encounters are very rare indeed in the
Milky Way and besides the Sun and the planets are approximately the same
age. To check Kant’s and Laplace’s hypothesis however requires imaging solar
systems in creation. The problem in doing this is twofold: the nearest star
formation systems are so far away that even a nebula that extends out to
the orbit of Pluto is only just about observable with standard ground-based
equipment. Even more important is the obscuring effects of dust since it makes
observations of the earliest stages of the star formation process impossible, at
least in the optical regime. Dust, on the other hand is fundamental to the
star formation process: without it, as pointed out below, we would not have
molecular clouds. Note however that dust only constitutes 1% by mass of a
molecular cloud.

Finally I should remark on the title. A number of years ago, Stephen Wein-
berg wrote his famous book The First Three Minutes in which he described
what happened in the early phases of the Big Bang. In contrast, around the
same period, we knew virtually nothing about the first three million years
in the life of the Solar System. The picture has changed dramatically in the
past few years largely due to the availability of modern instrumentation, par-
ticularly at infrared and mm wavelengths. With these ideas in mind and an
apology to Weinberg, we begin our brief overview of the star formation process.
Much of the detail will be filled-in by subsequent chapters not only in this
book but in the ones that follow it in the JETSET School Series. We start
by saying a few words about the sites of star formation, i.e. molecular clouds.

2 Molecular Clouds

With the development of mm waveband astronomy, it became clear that the
Milky Way, as well as other spiral galaxies, contained vast quantities of star-
making material in the form of molecular clouds. The clouds themselves could
be identified with the dark nebulae noticed by Herschel many years before.
Of course the lack of transparency in a dark cloud has nothing to do with the
presence of molecules but, as already mentioned, is instead due to dust. Dust,
however, and molecular clouds are intimately related. Without dust most
star forming molecular clouds would cease to exist since the dust protects
the molecules against dissociating interstellar uv radiation (uv radiation if
effectively blocked once the optical extinction AV ≥1 and most clouds have AV

values measured in tens to a few hundred magnitudes). Moreover not only does
dust protect molecules but dust grains are also sites were even the simplest
of molecules, such as H2 can form. Aside from H2, more exotic species such
as CO, NH3, amino acids, ethanol, and poly-aromatic-hydrocarbons (PAHs)
are found. In fact it was once calculated that the Sagittarius B2 Cloud at
the center of our galaxy contains enough ethanol for 1028 bottles of whiskey.
Proof-positive, as one wag put it, that there is a bar at the center of the
Milky Way!
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Molecular clouds can be divided up into two types: small molecular clouds
(SMCs) such as the Taurus-Auriga or Ophiuchus clouds (see Fig. 2) and giant
molecular clouds (GMCs), e.g. Orion (see Fig. 3). They differ in many prop-
erties other than the obvious ones of mass and size. SMCs typically contain a
few hundred solar masses of gas and dust and sizes measured in a few tens of
parsecs. They do not contain young massive OB stars and they are relatively
cool (T ≈ 10–20K). In contrast GMCs have masses around 104−6 M�, sizes
of approximately 100pc, both massive and low mass young stars, as well as
higher ambient temperatures (T ≈ 50–100K). Moreover the distribution of
GMCs and SMCs is different: GMCs are confined to the spiral arms whereas
SMCs are found not only in the spiral arms but in the inter-arm regions as
well. Our galaxy is host to some 4,000 giant molecular clouds and many more
small molecular clouds.

What is obvious from even a cursory inspection of a molecular cloud is its
filamentary and clumpy nature. Note that such clouds are usually “probed”
using rotational transitions of molecules like CO rather than the much more

Fig. 2. Anglo Australian Telescope image of the Ophiuchus Cloud showing not only
stars in formation but dark regions abundant in molecules and dust. Although the
dust obscures our optical view of the star formation process, without it a molecular
cloud could not form. Image courtesy of David Malin



8 T. Ray

Fig. 3. Palomar 200-inch Telescope near-infrared image of the Orion Cluster centred
on the Trapezium. Aside from the massive stars making up the Trapezium, there are
enormous numbers of lower mass solar-like stars. As the cluster mode of star forma-
tion seems to be the norm; it seems likely that the Sun formed in such an environment

common H2. There are a number of reasons for this. The first is that, because
of its low moment of inertia, the rotational transitions of H2 are well above
the ground state in a cloud with a temperature of a few tens of Kelvin. The
second is that molecules like CO have strong dipole moments, unlike H2 which
is symmetric and thus its transitions are weak. Returning to the structure of
a molecular cloud: clumpiness is seen on many scales. Not only does a typical
cloud possess filaments, clumps (containing several hundred solar masses) and
cores (made up of a few or tens of solar masses) but also diffuse structure.

Of course, gravity is relentlessly pulling on molecular clouds trying to force
them to collapse: it is thus reasonable to ask what supports such a cloud?
Cloud temperatures, as I have mentioned, are very low, and correspondingly
thermal pressures.

This is dramatically illustrated by considering the Jeans mass for the cloud
as a whole. MJ, is given by:

MJ = 1.6
(

T
10 K

)3/2 ( n
104 cm−3

)−1/2

M� (1)

where T is the temperature of the cloud and n is its average number
density. If we put in the typical temperature of a GMC and its density, we
get a Jeans mass of around a few hundred M�. In contrast the GMC can
contain 106 M�! A clue, however, as to what may be providing the support
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is given by observations of mm rotational transitions such as the J=1-0 CO
line. The widths of such lines are found to be several km s−1 whereas the
thermal width, at a temperature of a few tens of Kelvin, should be much less
than one km s−1. It is generally agreed that this line broadening is due to
turbulence since, as discovered by Larson, the velocity dispersion observed is
a function of the scale on which you look [37]. This is precisely what would
be expected from turbulence (for example from a Kolmogorov-type spectrum)
as energy cascades from larger to smaller scales. Moreover as the velocities
of the turbulence are greater than the sound speed, it is supersonic and thus
expected to generate shocks where some of its energy is dissipated.

Referring again to the structures seen in molecular clouds, I have remarked
already how both clumps and cores are seen. The mass of clumps would
suggest that ultimately these structures give rise to the young stellar clusters
we observe such as the Orion Cluster centred on the Trapezium. In contrast
cores are more likely to give rise to individual stars, binaries or multiple sys-
tems. It is interesting to note that in recent years an analysis has been made
in several clouds of the distribution of masses in cores. Such studies show that
the mass distribution follows closely that of the so-called Initial Mass Function
(IMF) of stars, i.e. the number of stars versus mass relationship seen in young
clusters [50]. This suggests that the IMF is determined at a very early stage
in the star formation process through cloud fragmentation. There is however
uncertainty at the high mass (OB-type) star end of the spectrum: such stars
could have their final mass largely determined by competitive accretion at the
center of the cluster (e.g. [12]).

Another aid to support in a molecular cloud may be its magnetic field.
That such fields are present is clear from a whole host of observations. For
example background stars, at the edges of molecular clouds, have enhanced
linear polarization , which is expected from aligned dust grains in the cloud.
In regions with higher extinction, the polarization of the mm emission from
the grains can be used to infer the presence of fields (e.g. [32]). Finally field
strengths can be measured directly through Zeeman splitting of various radio
emission lines (e.g. due to the OH radical). Field strengths vary enormously
depending on the density of the region one is observing and can range from a
few μG to a few mG [13].

If the magnetic flux is sufficient to prevent collapse, the cloud is said to
be sub-critical and critical if the flux is insufficient. Most cores are observed
to be borderline. There are however many uncertainties in deriving the field
strength, due, for example, to projection effects. Moreover, even if a cloud is
sub-critical to start with, this state of affairs may not continue indefinitely.
The reason is that the field is tied only indirectly to the ions in the cloud. Now
the degree of ionization in the cloud is very low (perhaps 10−6 and primarily
maintained by the penetration of cosmic rays in the darkest parts of the cloud).
Coupling to the neutrals is achieved through collisions. Slippage between the
neutrals and the ions occurs, a process known as ambipolar diffusion. Thus
eventually the ions “leak-out”, leaving the neutrals without support [39].



10 T. Ray

3 Collapse

Starting with a molecular core, how does the collapse process proceed?
Understanding this process is not only observationally difficult (the free-fall
timescales, for example, are very short astronomically-speaking and thus it is
hard to catch a cloud “in-the-act”) but also theoretically and computationally
challenging. Note that the average density of a star like the Sun is 1 g cm−3

whereas the typical density of a core is 10−20 g cm−3; the change is 20 orders
of magnitude! Temperatures rise from a few tens of Kelvin to tens of millions
of Kelvin and size shrinks from a few light years to a few million kilometres.

Early simulations of core collapse assumed the core to be initially spher-
ical and of uniform density and temperature. The assumption of uniform
temperature is reasonable: since the presence of dust, CO and hydrogen as
powerful coolants will ensure that any thermal energy, released through grav-
itational contraction, is efficiently radiated away. Effectively this ensures that
the collapse occurs in a free-fall time. In contrast uniform density seems very
unlikely: cores appear to be in quasi-hydrostatic equilibrium. Thus, as Shu
proposed many years ago [48], a better starting point for modelling purposes
is an isothermal sphere initially in gravitational equilibrium. It is easy to
show that such a sphere has ρ ∝ r−2, i.e. has equal masses in shells of equal
thickness and that the mass per unit radius is ≈ 6cs

2/G where G is the grav-
itational constant and cs is the sound speed. Collapse begins in the center
and moves outward at the sound speed, i.e. the radius grows like cs × t. As
the gas moves inwards at a speed of approximately cs/6 due to the steep
pressure gradient, the accretion, rate is ≈ cs

3/G or around 10−6M� yr−1 for
typical cloud temperatures. The inside-out core collapse model is attractive
although clearly has its limitations. For one thing most workers in the field
of star formation consider uniform accretion rates unlikely. Nevertheless, the
Shu hypothesis seems to be a good starting point.

As the molecular core continues to contract, the density at the center
becomes high enough (10−13 g cm−3) for it to become optically thick. The
temperature at the center then rises for the first time and further contraction
is resisted. The first “hydrostatic” core is born.

In the next phase, the temperature and density continues to increase.
When temperatures reach around 2,000 K hydrogen molecules are dissociated.
Gravitational potential energy is readily absorbed once again and the second
collapse phase begins. Temperatures continue to rise and so does the opacity
of the gas as hydrogen is ionized. Eventually a second “hydrostatic” core is
formed when ρ ≈ 10−2 g cm−3.

At this stage only a small fraction of the final mass is in the core (at most a
few percent) and the main accretion phase begins. The latter lasts for around
105 yrs until the star becomes optically visible below the birthline (a concept
explained later) on the HR diagram.

Of course the infall models we have been considering up to now are a gross
simplification of what we expect to happen in reality. We have ignored the
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effects of magnetic fields and rotation for example. The net effect in both cases
is of course to break the assumed spherical symmetry in favour of axisymme-
try. Magnetic fields may help slow down the collapse but ambipolar diffusion
ensures that the field diffuses away and gravity wins out.

4 The Main Accretion Phase

Once the hot core has formed, the protostar continues to accrete and builds
up most of its mass during a period lasting approximately 105 years for a star
that eventually ends up with a mass of around 1 M� (see Fig. 4). This is the
so-called Class 0 phase; the object is now a true protostar. Class 0 stars are
rare (as the phase lasts such a short time) and have a characteristic black-
body spectrum [2]. Millimeter waves, emitted by the circumstellar material,

Fig. 4. Diagrammatic illustration of the different phases in the formation of a star.
(a) Pre-stellar isothermal molecular cores with density increasing towards the center.
(b) Inside-out collapse occurs, an accretion disk develops and an associated outflow.
Much of the mass however is still external to the hydrostatic core. This is the Class
0 phase. (c) Most of the mass is now in the center, the disk continues to accrete
from the envelope and the star from the disk. The outflow is now well developed
and the star has reached the Class I phase. (d) Much of the envelope has now been
accreted, or dispersed by the outflow. The star is within a few per cent of its final
mass and is optically visible either as a T Tauri star or a Herbig Ae/Be star. This
is the Class II phase
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can easily penetrate the surrounding disk and envelope, i.e. the circumstellar
environment is optically thin in the millimeter band. Thus the miilimeter emis-
sion can be used to measure the total mass in the envelope and disk. A Class
O protostar is defined as one having more than 50% of its final mass in its disk
and envelope. The Class 0 phase is clearly optically invisible. Instead they emit
most of their radiation in the far-infrared to millimeter bands. Already, at the
Class 0 phase, outflows from the young star have begun (see Sect. 6); outflows
that can be seen, for example, through doppler-shifted CO rotational line emis-
sion. During this phase the accretion is not expected to be steady (as predicted
from simple infall models) but instead to be time varying. How the accretion
rate varies with time however is a matter of considerable controversy [20].

The protostar next evolves to the Class I phase; the young star is still
surrounded by a disk and envelope [18] although most of the mass is now in
the core. The star itself is not directly optically visible although scattered light
might be seen in an associated nebula. Instead the peak of its emission is in the

Fig. 5. An emission line image of the HH 34 outflow. HH 34S is the bow-shaped
object to the bottom (south) with the HH 34 blue-shifted jet pointing towards it. It
was thought at one time that HH 34S is the “terminal shock” were the outflow from
the young star rams into the surrounding medium. We now know this simple idea
is incorrect as the outflow is much bigger than previously thought. A counter bow,
HH 34N, is observed to the top (north) although no counter-jet is seen. Additional
HH emission can be seen further north. Image courtesy of Jochen Eislöffel
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near-infrared with a long tail extending to the far-infrared and even millimeter
wavelengths (see Fig. 5). Such systems are modelled by a combination of a
star (typically with a surface temperature of a few thousand degrees Kelvin)
embedded in an optically thick envelope and surrounded by a disk. Much of
the accretion is thought to occur onto the disk from the envelope and from
there onto the star. As matter grinds its way through the disk towards the
star, viscosity ensures that the disk is heated. This heat is radiated away
giving rise to the characteristic spectrum observed. Class I protostars are
more common than those of Class 0; presumably this reflects the fact that a
young star typically spends a longer time in the Class I phase than in Class 0.
When modelling Class I protostars, it is normally assumed that the envelope
is partially evacuated, above and below the disk, by the outflow. Lines of
sight through these bipolar cavities are clearly less extincted and thus a Class
I protostar observed at certain angles, may show an enhanced contribution
from the star with respect to the envelope and disk.

While the star goes through the Class 0 and I phases; the temperature
at the core becomes high enough to ignite deuterium. Deuterium burning
is very efficient (and in fact the energy output from deuterium burning is
comparable to what the star derives from gravitational contraction). As the
protostar is also fully convective, any deuterium that is accreted onto the
young star is burnt relatively quickly. Since the process has clear parallels with
what happens when a star is on the main sequence, the protostars essentially
join an equivalent line in the HR diagram above the main sequence, this is
the so-called birthline [49]. Once the main accretion phase is over, and the
star becomes optically visible for the first time, deuterium buring ceases and
the young star descends from the birthline. The final stages of stellar birth
has begun.

5 The Objects of Joy

As mentioned in the Introduction, Joy discovered the T Tauri class of variables
in 1945 [21]. At the time, it was not clear to him what they were although
their light curves were clearly very irregular with no obvious periodicity. Closer
study over the following decades showed us that Ambartsumian’s suggestion
[1] was correct, i.e. the T Tauri stars were pre-main sequence stars, shining
through gravitational contraction as they make their way down the HR di-
agram. Apart from an irregular light-curve, it was also soon realized that
T Tauri stars have a rather unusual spectrum. Unlike typical main sequence
stars, Hα is strongly seen in emission (occasionally the Hα equivalent width
is 200–300 Å) and a number of forbidden emission lines such as those due
to transitions of OI, SII and NII (e.g. [10]). Generally speaking, these emis-
sion lines were found to be blueshifted, a feature that was at first found to
be very puzzling. Appenzeller and his colleagues [3] then came up with the
novel suggestion that the redshifted component is obscured by a disk. Early
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researchers in this area had attempted to model the emission lines in terms of
a low density stellar wind. The models themselves were not very successful,
in particular they produced poor fits to the line profiles (e.g. [19]).

The resolution of this problem came with closer study of the forbidden line
emission: it was realised that two or more components are often present (e.g.
[31]). The high velocity component normally has a velocity of a few hundred
km s−1 and is often seen to be spatially extended using long-slit spectroscopy.
In contrast the low velocity component, with velocities closer to that of the
star, is frequently associated with a denser region and is quite compact. It
was suggested [35] that the low velocity component is a disk wind launched
at a few AU from the star. The high velocity component, in contrast, they
suggested comes from a region much closer to the source and is, in fact a jet
at the star. The jet may, or may not, manifest itself on extended scales, in the
form of an outflow (see below and the chapter by S. Cabrit).

6 Outflows

The discovery of outflows from young stars can be traced back to the
pioneering work of George Herbig [27, 28] and Guillermo Haro [23, 24] who
independently discovered the nebulous patches in the sky that bear their
names. That these nebulae were linked to the star formation process was im-
mediately obvious; however the precise nature of the link remained a mystery
for many years. Richard Schwartz [46] was the first to notice that the emis-
sion line spectra of Herbig-Haro (HH) objects resembles those of supernova
remnants suggesting that their emission arises from post-shock cooling rather
than photo-ionization. Other differences from photo-ionised regions were also
evident: for example, HH objects were observed to move at speeds of up to
several hundred km s−1, i.e. much faster than the expansion velocities of HII
regions. On the other hand the velocities of HH objects were still typically
lower than that of the average supernova remnant [16, 30]. Moreover their
spectra were dominated by low excitation species (e.g. O, S+) suggesting low
velocity shocks.

Several theories were put forward to explain their origin. Richard Schwartz
[47], for example, suggested HH objects were due to clumps, from the parent
molecular cloud, getting in the way of the wind from a young star. It was
however the widespread use of the CCD camera, which allowed much deeper
images of the sky than traditional photographic plates, that revealed their
true nature. It was found (e.g. [40]) that HH objects were either parts of
jets or delineated the region where the jet interacted with its surroundings.
The archetypal example, HH 34, is shown in Fig. 5. The first photographic
observations of HH 34 [29] showed it to be bow-shaped. Deeper CCD images
e.g. [14, 45] however revealed a jet pointing towards HH 34 as well as a counter
bow to the north (HH 34N). Close study revealed the jet to consist of a string
of HH knots and its source, HH 34-IRS, was only seen in the infrared. The
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discovery of other jets followed, e.g. HH 111 [25] but the basic structure was
usually the same: a string of knots close to the source, i.e. the jet, followed by
a more widely spaced set of HH complexes.

As the format of the CCDs became larger and larger so, with time, did
the apparent size of HH outflows. Apparent size seemed to be a function of
observer patience, allocated observing time and detector field of view! (e.g.
[7, 17, 44]). A number of outflows are now known to stretch for at least ten or
more parsecs. No doubt, in some cases, they go beyond the parent molecular
cloud boundaries. In retrospect this seems reasonable: statistically the outflow
phase lasts about 106 yrs for low mass stars. If we assume the head of the
outflow moves outwards at 50–100 km s−1 over this timescale, then clearly it
will penetrate many parsecs into its surroundings.

Prior to the discovery of HH jets, it was already evident that YSOs had
outflows. Winds from young stars, for example had been discovered many
years before [34] but perhaps more pertinently observations of star forming
regions using molecular lines (e.g. CO rotational transitions) at mm wave-
lengths revealed giant redshifted and blueshifted lobes straddling opposite
sides of protostars. Some 60 of these “molecular outflows” had been discovered
by the mid 80’s alone [36]. In all cases they appeared to be poorly collimated
with typical velocities of tens of km s−1 and sizes between 0.1 – 1 pc (e.g.
[6]). This molecular gas does not appear to be ejected directly from the young
star but instead is ambient material that is either entrained or pushed by its
underlying, much more highly collimated, outflow.

In contrast to Active Galactic Nuclei (AGN) jets, the detailed physics of
which is poorly known, the rich emission line spectra of HH jets provide us
with a wealth of information on conditions in both the jet propagation and
launching zones (see the chapter by Cabrit in this volume for more details of
the jet launching zone). For example, we can determine their velocities, from
spectroscopic and proper motion studies, to be typically a few hundred km
s−1 and, as we know their average temperatures are around 104K from exci-
tation levels, it follows that jet Mach numbers are 10–30. Another interesting
observational finding is that their opening angles, defined as jet width divided
by distance from the source, are very small (see chapter by Cabrit). Typical
values are a few degrees at most, implying HH jets are highly collimated.

Most of the knots in HH jets have line spectra indicative of shock velocities
around 40–80 km s−1. This is considerably lower than actual jet velocities and
immediately implies that the knots are not “terminal shocks”. Instead it seems
much more likely that they are due to variations in the outflow from the source
(see, for example, [42]). The basic idea is rather simple: a highly supersonic
flow will produce internal shocks (also known as internal “working surfaces”)
if it undergoes variations in relative velocities that exceed the local sound
speed. To give a concrete example if the outflow from a source increases in
velocity from say 200 km s−1 to 230 km s−1, this produces two shocks within
the system: the first where the slower jet material ahead of the variation is
accelerated and a second where the higher velocity material is decelerated. The
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material between the two shocks is of course heated and hence under pressure.
In the case of a 3-dimensional jet this material is then ejected sideways which,
after interacting with its surroundings, gives HH jet knots their characteristic
bow-shape.

A major difference between AGN and YSO jets (apart from the obvious
ones of size and velocities) is that the former are essentially adiabatic whereas
energy losses, due to radiative cooling, are important in the latter. That said,
it is still thought that the knots seen in AGN jets have an indentical origin:
i.e. they are internal working surfaces. Moreover like AGN jets, YSO jets are
seen to curve gently in C- or S-shaped morphologies centred on their source.
It seems likely that the causes are again identical: a “side-wind” generated by
the motion of the source and precession respectively (e.g. [8]).

The strength of the line emission, in conjunction with abundance estimates
and known distances, can be used to gauge the mass loss rates in HH jets.
Although there are considerable variations, it is found that these are around
10−9 to 10−7 M� yr−1 for solar mass YSOs [5]. In turn these values can be
used, in conjunction with known accretion rates [22] for the same stars, to
estimate the outflow efficiency, i.e. the mass loss rate over the accretion rate.
Typically this is found to be 1–10%. Such relatively high efficiencies seem to
support the idea that jets are launched centrifugally along magnetic field lines
anchored to the star’s accretion disk (see the chapter by Cabrit for further
details). Finally it is worth noting that recent observations, with the long-
slit spectrograph on board the HST, have shown evidence that HH jets may
be rotating [4, 15, 51]. This is illustrated in Fig. 6. The velocity differences
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observed, on opposite sides of a jet close to its source, are also consistent with
models that suggest jets are launched centrifugally from a disk (see also the
chapter by Ferreira).

7 Disks Around YSOs

We started this introduction to star formation by mentioning the nebular
hypothesis of Kant and Laplace. It is appropriate to end then with the modern
day vindication of their ideas on how stars and planets form. As already
mentioned there is plenty of indirect evidence for disks around young stars
including infrared/mm excesses and the blocking of their redshifted emission
lines. Because of their small angular size however direct imaging of disks had
to await HST (e.g. [41]) and long baseline millimeter interferometry (e.g. [33]).
Such studies show that the disks surrounding T Tauri stars and other low mass
stars in irradiated regions such as Orion, have diameters around 100 AU.

Perhaps the most dramatic form in which we see disks is the so-called
proplyds. We have already mentioned the cluster at the centre of the Orion

Fig. 7. HST images of proplyds in the Orion Nebula. These proplyds are all centred
on θ1C Orionis and the image is courtesy of John Bally, David Devine and Ralph
Sutherland. The bow shocks are regions where photo-evaporated gas from the disks
interacting with the wind from this O-type star. Inset a disk is seen in silhouette
against the emission from the Orion Nebula. This YSO is outside the HII region.
Note the scattered light from the central YSO
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nebula, the Orion Cluster (see Fig. 1). It consists of approximately 700 stars,
many of which are contained within the HII region ionized, primarily, by the
most powerful of the Trapezium stars, θ1C Orionis. HST showed that many of
these low mass stars are surrounded by extended structures (see Fig. 7) with
typical angular dimensions of about 1′′. Some have cometary-like tails pointing
away from θ1C Orionis. It was also shown that protostars are detected in the
near-infrared at the center of almost all of these objects [38]. We had finally
seeing Kant and Laplace’s disks.
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1 Measurements of Jet Collimation at Various Stages

Highly collimated, energetic jets are observed at all evolutionary stages of
low-mass young stellar objects (hereafter YSOs; see Ray, this volume). Their
morphological and kinematic properties remain surprisingly similar despite
different tracers and circumstellar environments (see e.g. [14] for a compar-
ative review). Scaled-up versions are also encountered in luminous YSOs of
several 104 L� (e.g. [23, 33, 75]), but their greater distance from us hampers
detailed studies on 100 AU scales. In the following, I will thus focus on the col-
limation properties of nearby jets from low-luminosity sources, which provide
the tightest constraints for collimation models.

1.1 Jet Widths and Opening Angles in Class II Sources

In optically visible pre-main sequence stars (Class II sources), small “micro-
jets” are traced out to ≤ 1000 AU of the source in low-excitation forbidden
lines in the optical (e.g. [O i]λ6300, [N ii]λ6583, [S ii]λ6731) and near-IR
([Fe ii]λ1.64μm). At this late stage (a few Myr), circumstellar material has
settled into a thin disk, allowing a clear line of sight to the innermost jet
regions where initial collimation is taking place.

Measurements of jet widths within 800 AU of the star, obtained with HST
or with adaptive-optics from the ground, are presented in Fig. 1 (see also
[89] and [106]). The jets are well resolved transversally at 30–50 AU from the
central star, with a characteristic width of 20–40 AU. Beyond 50 AU, the jet
width grows slowly with distance with a full opening angle of a few degrees.
This is compatible with the “Mach angle” expected for free lateral expansion
of a supersonic jet:

Fig. 1. Optical jet widths within 800 AU for Class II sources. Symbols show adap-
tive optics observations with CFHT (deconvolved). Solid/dashed curves show HST
results for HH 30 and HL Tau from [89]. Measurements for DG Tau are affected by
strong bowshocks and are an upper limit to the true jet width. From [38]
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α = 2 × arctan(Cs/Vj) � 3.8o (1)

for a typical jet temperature of 104 K and a jet speed of 300 km s−1.
Within 50 AU (0.3” at the distance of Taurus), accurate correction for the

instrumental PSF (0.1” with HST/STIS) becomes critical to retrieve intrinsic
jet widths. Remarkable results have been recently obtained by Hartigan et al.
(2004) on two Class II jets using STIS/HST in “slitless” imaging mode. Re-
sults are shown in Fig. 2. The jet width is again 25–30 AU at 50 AU, but the jet
opening angle inside this region is much wider (20◦–30◦) than on larger scales.
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Fig. 2. Optical jet widths within 50 AU in two Class II stars, before (left) and after
(right) correction for the PSF. The full opening angle is 20◦ in HN Tau (top) and
30◦ in UZ Tau E (bottom). From Hartigan et al. (2004). Similar widths are found
for bipolar water maser systems in Class 0 sources (see text)
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Extrapolation back to the stellar position indicates that the optical jets orig-
inate from a region less than 5.5 AU in diameter, and possibly much smaller.

1.2 Jet Widths and Opening Angles in Class I Sources

Atomic jets from 105yr old infrared protostars (Class I objects) are brighter
than in the later Class II phase, with a continuous beam that may be traced
in the optical out to 0.05 pc from the source (see e.g. [90] for a review). Due
to high extinction and scattered light nebulosity, the innermost jet regions are
only traced in the near-IR, using H2 and [Fe ii] lines [30, 31, 32].

The opening angles and widths of Class I jets agree with an extrapolation
of the Class II jet properties in Fig. 1. For example, the HH 1 jet has a width
of 100 AU at 1000 AU from the source, with a full opening angle of 2.6◦

thereafter [92]. The jet widths appear similar in H2 2.12μm and in [Fe ii], at
the resolution of HST [92]. No width measurements have yet been reported
for inner jet regions within 1000 AU.

1.3 Jet Widths and Opening Angles in Class 0 Sources

Energetic collimated jets are already present at the earliest phase of proto-
stellar evolution, in the so-called “Class 0” phase where the infalling envelope
mass well exceeds the mass of the accreting star (see e.g. the review by [1]).
The jet base is heavily extincted, but near-infrared H2 and [Fe ii]λ1.64μm
emission knots are seen beyond a few hundreds of AU from the source (cf. [20]
and references therein). Spectacular CO or SiO jets have also been recently
discovered in a few Class 0 sources with mm interferometers. L 1488 and
HH 211 are good examples [24, 53, 54]. On resolved scales (beyond 200 AU)
the jet width, opening angle, and even knot spacing, are strikingly similar to
those of atomic Class I jets such as HH 34 [14].

The innermost jet regions in Class 0 objects have first been imaged in the
thermal free-free continuum at centimeter wavelengths with the VLA (see e.g.
[2] and [94] for reviews). They are unresolved transversally with a maximum
width < 50 AU on 50 AU scale.

New clues to the small scale collimation of Class 0 jets have been recently
provided by VLBI-cm studies of H2O masers. Forty percent of Class 0 objects
excite water masers tracing very dense shocks within 100 AU of the source
([50] and references therein). When mapped, the maser spots often display
a bipolar structure with proper motions indicative of a jet-like flow, with a
diameter of only 8–20 AU at a distance of 20–40 AU [22, 25, 49]. This is
strikingly close to optical jet widths measured on the same scale in Class II
sources (cf. Fig. 2).

1.4 Jet-disk Alignment and Jet Precession

In Class II objects where the disk has been imaged in scattered light or CO
lines, one may compare the direction of the optical jet with the symmetry
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axis of the disk. In all cases studied so far, the two axes coincide precisely,
even when the jet curves away from its initial direction further out. A fine
example is the HH 30 system, whose nearly edge-on disk and associated jet
were discussed by Burrows et al. (1996). Other examples are HV Tau/C [102]
and RW Aur [19].

Observations further show that the jet axis varies by at most a few degrees
within 500 AU of the source, corresponding to timescales ≤ 10 yrs. For ex-
ample, Raga et al. (2001) modelled the small wiggles in the DG Tau microjet
with a precession angle of about 5◦ over an 8 yr period. More pronounced
jet wiggles and jet curving are observed on larger scale in Class I jets (cf.
[91]) and in parsec-scale chains of emission knots (e.g. [36]). But the typical
timescales are 102 − 104 yrs, much longer than dynamical timescales in the
jet ejection zone.

1.5 Summary

The measurements described above yield several important implications and
constraints for the collimation process of jets from young stars.

• Studies of Class II stars show that the optical jet originates from a re-
gion less than 3 AU in radius and expands with a full opening angle of
about 20◦–30◦ between 10 and 50 AU. Beyond 50 AU, the jet opening
angle is much smaller (a few degrees) and compatible with free supersonic
expansion. Hence, the collimation process must enforce an essentially uni-
directional flow at about 50 AU of the source, at least for the brightest
part of the jet.

• Quite strikingly, jet widths are not found to differ between objects of var-
ied evolutionary stages, from Class 0 protostars with a dense infalling
envelope, through Class I infrared sources with residual infall, to Class II
optically visible stars with no envelope and a thin disk. Thus, jet collima-
tion cannot rely on an infalling envelope.

• The collimation process must produce a jet beam that is closely aligned
with the disk axis at 30–50 AU from the source. Jet precession does not
exceed a few degrees on timescales ≤ 10 yrs.

2 Comparison with HD
and MHD Jet Collimation Models

In this section I will revisit (in chronological order) the various jet collimation
models that have been proposed in the literature, and examine whether they
can reproduce recent data on jet widths and collimation scales. I will focus
on the case of low-luminosity Class II sources (classical T Tauri stars), which
provide the most severe constraints. For quantitative estimates, a fiducial
mass-loss rate of 10−8M�yr−1 will be adopted, as this is typical of Class II
jets where collimation measurements have been made.
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2.1 Collimation by External Thermal Pressure

The first scenario proposed to explain the collimation of YSO outflows in-
volved the external collimation of an initially isotropic wind by a flattened
circumstellar structure, e.g. a disk. The anisotropic thermal pressure gradient
limits the wind expansion in the disk plane, forcing it to collimate towards
the disk poles.

When the wind ram-pressure is exactly balanced by the ambient thermal
pressure, the cavity reaches a steady configuration and does not expand any
more. Semi-analytical calculations of the steady cavity shape were performed
in two extreme assumptions concerning the wind shock: adiabatic [67] and
highly radiative [8, 101]. The latter hypothesis is probably more correct for
the high densities and moderate speeds of YSO winds [41].

Figure 3 represents the steady cavity shape found by Barral and Canto
(1981) for a disk immersed in a constant pressure cloud. As the wind shock is
assumed highly radiative, the shocked wind material is compressed in a thin
layer and slides against the cavity wall (the momentum parallel to the shock is
conserved). Below we discuss in turn three characteristics of the shocked wind
cavity: (1) its “waist” radius in the equatorial disk plane, (2) its asymptotic
opening angle above the disk plane, and (3) the distance Zmax where the wind
is refocussed on-axis under the effect of a finite ambient pressure.

Fig. 3. Sketch of the geometry of the shocked wind cavity for by a uniform self-
gravitating disk (shaded area), embedded in a finite pressure medium. Ambient
pressure forces the shocked wind to refocus on axis at the “tips” of the cavity.
From [8]
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1- Equatorial Confinement (“Waist” Radius)

In the simple case of an initially isotropic wind, the equatorial radius R0 of
the “waist” of the cavity will be determined by balance between the wind ram
pressure and the thermal pressure in the disk plane,

ρw(R0)V 2
w = ṀwVw/4πR2

0 = Pc(R0) , (2)

where Ṁw is the total wind mass-loss rate. Denoting as Tc and nc the tem-
perature and number density in the disk plane, one finds:
(

Ṁw

10−8M�yr−1

)(
Vw

300km s−1

)(
R0

100AU

)−2

=
(
nc(R0)Tc(R0)
6 × 109K cm−3

)
. (3)

Midplane densities and temperatures in Class II sources have been recently
estimated at radii of 50–400 AU from resolved interferometric disk maps in
CO lines and dust thermal continuum. Detailed analyses exist for a few well-
studied disks, e.g. GM Aur and DM Tau [29, 40], and they suggest nc(r)Tc(r)
� 1 − 2 × 1010(r/100 AU)−3.4 K cm−3, for an accretion rate Ṁacc � 10−8

M�yr−1 [55].
We may also calculate theoretically nc(r)Tc(r) for a “standard” steady

viscous accretion disk model where viscosity scales as ν = αCsh (with h the
local disk scale height) and α is assumed constant throughout the disk. In a
thin and vertically isothermal disk dominated by gravity of the central star,
h/r = Cs/VK(r) and ρc = Σ/(

√
2πh) (gaussian profile) where Σ is the surface

density. The steady inward accretion speed is uR � ν/r [72]. Therefore,

ρcC
2
s =

ṀaccC
2
s

2πrhuR
√

2π
=

1
α(h/r)

(
ṀaccVK
(2π)3/2r2

)
. (4)

With h/r � 0.1 and α � 10−2, as suggested by disk images and disk lifetimes
in T Tauri stars (e.g. [13, 60]), we obtain:

nc(r)Tc(r) � 5×1010
( r

100 AU

)−5/2
(

Ṁacc

10−8M�yr−1

)1/2(
M�

M�

)1/4

K cm−3 .

(5)
This is similar to observationally determined values at 100 AU, although the
index of the radial power law is flatter (–2.5 instead of –3.4).

Comparing with (3), we see that the midplane pressure of an α-disk will
exceed the wind ram pressure already at disk radii of 100 AU, especially
since sources with mass-loss rate Ṁw= 10−8 M�yr−1 have on average 10
times higher mass-accretion rate (cf. Sect. 3.1). As ncTc increases inward
more steeply than r−2, equatorial wind expansion will in fact be stopped at
the inner edge of the disk, so that R0 ≤ 0.1 AU, consistent with the constraint
R0 ≤ 3 AU obtained by Hartigan et al. (see Fig. 2).
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Thus, Class II viscous accretion disks provide very efficient equatorial wind
confinement, even for wind mass-loss rates comparable to the disk accretion
rate. However, confinement in the equatorial plane is not sufficient to produce
a jet. The opening angle of the shocked wind cavity should also be small
enough. We now examine this issue.

2- Wind Opening Angle

Simple geometrical arguments show that the asymptotic opening angle of the
shocked wind cavity (above the disk plane) will depend on the ratio of the
disk pressure scale-height h to the waist radius R0, i.e. on the aspect angle
h/R0: A larger h/R0 means that a wind streamline flowing at a given angle
to the midplane will encounter a higher ambient pressure, hence experience a
more efficient confinement, yielding a narrower cavity.

The asymptotic opening angle of the cavity has been calculated in the
particular case of a uniform, isothermal, self-gravitating disk (h = cst) by
Barral and Cantó (1981). As illustrated in Fig. 4, the cavity angle from the
disk midplane, θ∗, depends very strongly on λ = h/R0. Cylindrical collimation
(θ∗ = 90◦) is achieved for λ = 0.8.

0
0°

30°

60°

90°

0.3 0.6 0.9λ

θ∗

Fig. 4. Asymptotic angle made by the wind cavity with the disk midplane, θ∗, as a
function of the disk aspect ratio at the waist radius, λ = h/R0, for a self-gravitating
isothermal disk. Cylindrical collimation (θ∗ = 90◦) is achieved for h/R0 = 0.8.
From [8]
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While such large values of h/R0 could be expected in self-gravitating disks
around young objects (see (13) of [8]), disks around Class II sources are dom-
inated by the stellar gravity and have typically h/r = Cs/VK ≤ 0.1 at all
radii. From Fig. 4, this would suggest an asymptotic angle θ∗ � 25◦ from
the equator, ie a full cavity opening angle of 130o. Note that this estimate
is too optimistic, as Fig. 4 was derived for self-gravitating disks, where pres-
sure decreases vertically as exp(−2z/h), whereas disks dominated by gravity
from the central star have a steeper decrease, ∝ exp(−(z/h)2/2). Thus, disk
thermal pressure alone will not produce a well-focussed jet beam in Class II
sources.

3 - Reconfinement by Ambient Thermal Pressure

Barral and Cantó (1981) showed that strong reconfinement of the shocked
wind can be obtained if the disk is immersed in a medium of non-zero pres-
sure. Since the wind pressure drops as R−2, the (constant) ambient pressure
eventually dominates and forces the shocked wind to refocus towards the axis,
forming an acute tip at a distance Zmax from the star, as illustrated in Fig. 3.
A narrow, supersonic jet parallel to the disk axis then emerges from this
tip [105].

Unfortunately, the observational constraint that Zmax ≤ 50AU turns out
to require excessively high ambient densities: Careful examination of Fig. 5 of
Barral and Cantó (1981) shows that, for all values of Z0/h (where Z0 is the
altitude at which pressure becomes constant), Zmax obeys

DG Tau
HN Tau
CW Tau
HH 30
UZ Tau E
HL Tau
RW Aur

Fig. 5. Comparison of observed optical jet widths in Class II sources (symbol mean-
ing indicated in the upper left) with predicted widths for self-similar MHD disk-wind
solutions launched from 0.07–1 AU (solid curves). Model predictions are obtained
from synthetic emission maps in the same emission lines and at the same resolution
(15 AU) as the observations. From [89]
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Z2
max � R2

0(Pc/P0) = ṀwVw/(4πP0) . (6)

This says, not too surprisingly, that the ambient pressure P0 must be on the
order of the wind ram pressure at Zmax for reconfinement to occur. Hence,
using (3) above, we see that reconfinement at distances ≤ 50 AU of the central
star would require (ncoll × T ) ≥ 2.4 × 1010 K cm−3 for a wind mass-loss rate
of 10−8 M�yr−1.

Assuming the collimating material is at typical cloud temperatures � 10 K,
it would produce a large visual extinction towards the central source AV ≥
ncollZmax/(1021cm−2) ≥ 1800(10 K/T ) mag. However, T Tauri stars suffer
typically less than 3 magnitudes of extinction (see e.g. [58]), hence the density
of cold remnant gas fails by at least a factor 600 to collimate the jets. Note that
wind refocussing could be achieved in dense infalling envelopes around younger
protostellar sources, as nicely demonstrated in the numerical simulations of
Delamarter, Frank, and Hartmann (2000). However, we have seen that jets
in Class II objects are as well collimated as those in Class I/0 sources (see
previous section), so cold infalling envelopes cannot be the main agent for
their collimation.

Returning to the above expression for AV , we see that external collimation
of Class II jets with AV < 3mag would require a warm circumstellar medium
with T ≥ 6000 K. The only obvious means to fill a 100 AU region with warm
gas around low-mass Class II sources would be through photoevaporation of
the UV-irradiated disk surface. However, for typical T Tauri parameters, the
predicted density of the photoevaporated disk wind at a distance of 50 AU is
only � 400cm−3 [48]. Even if the flow keeps its initial temperature of 104 K
despite the expansion, its thermal pressure will be a factor 6000 too small for
jet refocussing.

We conclude that external thermal pressure can be safely ruled out as the
generic jet collimation process in YSOs.

2.2 Collimation by External Magnetic Pressure

Since interstellar clouds are magnetized, and jet sources tend to have their disk
axes aligned with the field [79], we will investigate now whether jet focussing
could be provided by ambient magnetic fields. When the circumstellar B-
field has a preferred direction, magnetic tension counteracts wind expansion
perpendicular to the field lines, leading to a wind bubble elongated along B.
This process was first investigated in the case of an adiabatic wind shock,
analytically by Koenigl (1982) and numerically by Stone and Norman (1992).
It was reconsidered in the radiative case, specifically in the context of the
collimation of stellar winds from T Tauri stars, by Kwan & Tademaru (1988).

Under radiative shock conditions, an order of magnitude estimate for the
collimating field required to focus the wind into a jet at distance Zmax may be
derived in the same way as in the preceding section, simply replacing ambient
thermal pressure by magnetic pressure:
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ṀwVw/(4πZ2
max) � B2

coll/8π . (7)

This is only approximate, as expansion of the wind will compress the field
and thus modify slightly the equilibrium condition. Other considerations give
a similar expression but with the jet radius rj �15 AU in place of Zmax [64],
which would be even more constraining. Quantitatively, we obtain

Bcoll � 10

(
Ṁw

10−8M�yr−1

)1/2 (
Vw

300km s−1

)1/2(
Zmax

50AU

)−1

mG . (8)

This value of B is much higher than the 10–100 μG measured in dense prestel-
lar cores of densities nH � 104cm−3 [79]. In principle, the large-scale field will
be amplified by compression during the core contraction phase [9]. However,
the poloidal flux required for collimation appears quite large. For jet colli-
mation to be effective, the confining poloidal field must be anchored over a
disk region of radius rD � rj � 15 AU [66]. With rD �100 AU, the required
magnetic flux (ΦB)coll = πr2DBcoll is then

(ΦB)coll = 8×1028

(
Ṁw

10−8M�yr−1

)1/2 (
Vw

300km s−1

)1/2(
r2DZ

−1
max

200AU

)
G cm2 .

(9)
This may be compared with the total magnetic flux initially threading the
core just before gravitational collapse. For collapse to occur, the ratio of mass
to flux must exceed a critical value (M/ΦB)crit = 0.13/

√
G [80]. Hence, for a

typical T Tauri star, the initial flux is at most:

(ΦB)init = 4 × 1030

(
Minit

1M�

)
(M/ΦB)crit
(M/ΦB)init

G cm−2 . (10)

We thus find that any primordial poloidal field collimating the jet should
have trapped within 100 AU at least 2% of the poloidal flux initially present
in the core (up to 20% if the initial mass/flux ratio is 10 times the critical
value). This is quite high, given that some of the flux will presumably end up
in the star itself, and that field diffusion should be quite effective at the low
ionization levels and high densities in disks. Regeneration of poloidal flux by
a global disk dynamo also appears unlikely on scales rD ≥ 100 AU.

Another possibility avoiding the flux problem would be to refocus the wind
not by an organized poloidal field, but by a “turbulent” magnetic pressure
with < B >� 10 mG. Indeed, we have seen previously that confinement in the
disk midplane is sufficient to initiate preferential wind expansion towards the
poles (though with a very wide opening angle). Isotropic turbulent magnetic
pressure could then play the role of the constant ambient thermal pressure
in the Barral & Cantó models, simply forcing back the shocked wind into a
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narrow jet at Zmax, aligned with the disk axis. Since thermal pressure around
T Tauri stars fails at least by a factor 600 to refocus the wind, the magnetic
energy density would have to be well above equipartition (plasma β < 1/600).
It is unclear how such a magnetically dominated turbulent region may be
created and maintained over 100 AU scales.

2.3 MHD Self-collimation

The third collimation mechanism proposed for YSO jets is the process of MHD
self-collimation, well covered in several lectures in this volume (Tsinganos,
Sauty, Ferreira, Lery). Very schematically, the basic elements include an MHD
wind launched along an organized magnetic field anchored in a rotating object
(star, disk, infalling envelope), with a non-zero current flowing across the
magnetic surfaces. Beyond the Alfvén point, the inertia of the wind “drags”
behind and winds-up the field lines, creating a strong toroidal B-component.
The J × B Lorentz force then exerts a confining force towards the axis that
recollimates the magnetic/flow surfaces.

In the case of MHD winds from accretion disks, the optically visible jet
beam may trace only the densest axial regions in a wider flow, with outer
streamlines collimating on much larger scales (hence the term “optical il-
lusion” introduced by Shu et al. 1995; see also [16]). Detailed calculations
of emission maps and convolution by the beam are then necessary to com-
pare with observations. Furthermore, the collimation depends strongly on
the mass-loading of the streamlines [44, 87]. As shown in Fig. 5, the ob-
served jet widths, collimation scales, and opening angles, can be very well
reproduced by self-similar disk wind models with reasonable parameters (see
[51, 85, 89]).

Launching steady MHD disk winds from keplerian disks requires poloidal
fields close to equipartition in the disk plane (see [45]). Thanks to the strong
wind magnetic torque, the accretion speed is much faster (uR � Cs) than in
an α-disk, so the density is correspondingly lower. For a disk accretion rate of
10 times our fiducial wind mass-loss rate of 10−8M�yr−1, and a self-similar
model, one finds (cf. 16 in Ferreira’s lecture, this volume):

Bequ(R) � 200
(

R

1 AU

)−5/4
(

Ṁacc

10−7M�yr−1

)1/2 (
M�

M�

)1/4

mG . (11)

The poloidal magnetic flux enclosed within 1 AU is then (ΦB) � 1026 G cm2.
Self-collimation of MHD winds from the stellar surface would require an even
smaller magnetic flux (e.g. [95]).

Hence, MHD self-collimation of jets is much more “economical” than ex-
ternal magnetic collimation by a large scale poloidal field, in the sense that
the required poloidal flux is at least 2 orders of magnitude smaller. The differ-
ence arises because self-collimation is achieved by the toroidal field component
created by the wind itself, not by the poloidal component carrying the flux.
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The stability of this self-collimation mechanism is an important issue,
as strong toroidal fields might be expected to generate destructive non-
axisymmetric “kink-modes”. Numerical simulations in 3D suggest that self-
collimated MHD jets could actually maintain stability beyond the Alfvén sur-
face through self-regulating processes of internal flux redistribution (see [87]
for a recent review).

2.4 Summary

• Jet collimation by external thermal pressure gradients is ruled out: disks
are too thin to produce a well-collimated jet beam, and dense confining
envelopes would produce excessive extinction towards Class II jet sources.

• Jet collimation by external magnetic pressure gradients would require a
magnetically dominated region (β < 1/600) with a poloidal or turbulent
field strength � 10 mG over at least 100 AU. It is unclear how such a
region may be formed and maintained.

• Self-collimation of MHD winds launched from the disk or star produces
collimated jets with only a tiny fraction of the magnetic flux required
for external magnetic collimation. Furthermore, detailed predictions for
self-similar MHD disk winds readily reproduce the jet widths, collimation
scales, and opening angles in Class II jets for realistic parameters. Hence
this process appears currently as the most promising.

3 Measurements of Jet Energetics:
Accretion-ejection Correlations

The second line of evidence for the role of MHD processes in YSO jets derives
from measurements of the jet energetics (mass, momentum, and kinetic energy
flux), compared to the available power in the driving source.

Depending on the evolutionary stage of the source (Class 0, I, or II), various
techniques may be used to estimate the jet energetics. Below I will recall the
main results, namely that jet energetics at all stages appear tightly correlated
with accretion signatures. This strongly argues that the jets are ultimately
powered by the release of gravitational energy in the accretion flow feeding
the young star. The ejection efficiencies , i.e. the ratios of jet mass, momentum,
and kinetic energy flux to the accretion rate (or accretion luminosity) will also
be reviewed. They will later be compared with predictions of jet acceleration
mechanisms.

In the following, I will use the subscript j to refer to one-sided quantities
estimated in one jet lobe, and the subscript w (as “wind”) to refer to quantities
integrated over all solid angles of the outflow.
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3.1 Ejection to Accretion Ratio in Atomic Jets (Class II/I)

Class II sources are an ideal laboratory to study ejection-accretion correlations
for two reasons: (i) the stellar photosphere is visible, so the excess emission
produced by disk accretion can be extracted and modelled, giving a measure of
the accretion rate Ṁacc and of the accretion luminosity Lacc= GM�Ṁacc/R�.
(ii) the jet is observable in optically thin (forbidden) atomic lines, allowing
relatively direct estimates of the jet density, radius, speed, and mass-flux rate.

First indications of an ejection-accretion connexion in Class II sources were
presented by Cohen et al. (1989), Cabrit et al. (1990), and Corcoran and Ray
(1998) who reported a correlation between the [O i]λ6300 luminosity (from
the jet) and the infrared excess luminosity (from the disk) in T Tauri stars
and their higher mass analogs, the Herbig Ae/Be stars. No such correlation
was found with the stellar photospheric luminosity, implying that the ejection
process should be ultimately powered by disk accretion. This is confirmed by
the absence of any detectable jet in stars without accretion disks (“weak-lined”
T Tauri stars).

The ejection-accretion correlation in T Tauri stars was confirmed and
quantified by Hartigan et al. (1995; hereafter HEG95), who developed meth-
ods to estimate Ṁacc and Ṁj from optical spectra. Their results are presented
in the left panel of Fig. 6. A correlation is apparent over 3 orders of magnitude
in Ṁacc, with a mean (one-sided) ratio Ṁj/Ṁacc � 0.01. This is probably a
lower limit: In a detailed re-examination of accretion rate derivations, Gull-
bring et al. (1998, hereafter G98) concluded that Ṁacc values from HEG95
were systematically too large by about a factor 10. Stars with revised Ṁacc
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from G98 are plotted in Fig. 6 as open circles. The mean ratio Ṁj/Ṁacc is
now � 0.1.

The right-hand panel of Fig. 6 plots the jet momentum-flux (or “thrust”)
in the jet, Fj= ṀjVj , versus accretion luminosity, for the same sample. One
finds Fj� 150Lacc/c with the updated accretion rates from G98. Note that the
correlation would be completely blurred if plotted versus the total luminosity
of the system, Lbol= L�+ Lacc, since the strength of jets is uncorrelated with
the stellar luminosity L�, which dominates Lbol in most T Tauri stars.

It is noteworthy that the correlations are affected by a large scatter of
about a factor 10 in both Ṁacc and Ṁj . Part of it probably stems from the
irregular variability of T Tauri stars: accretion shock diagnostics vary signif-
icantly on timescales of days, while forbidden lines trace Ṁj averaged over
at least a year (50 AU at 300 km s−1). Another part of the scatter reflects
intrinsic uncertainties in the method to derive Ṁj: There have been recent
efforts to refine jet mass-loss rates using line ratios and spatially resolved or
flux-calibrated images. The assumptions and associated uncertainties are de-
scribed extensively e.g. in [14]. The inferred values typically span an order of
magnitude, depending on the distance from the star and on the method used.
This may be seen in Fig. 7 in the case of the RW Aur bipolar jets (see also
Fig. 10 in [14] for the DG Tau jet, and [82] for the VLA 1 jet). Hence current
uncertainties on jet mass-loss rates remain a factor 10 even in the best stud-
ied cases. Comparison with the values of Ṁj derived by HEG95 suggest that
the latter also suffer a factor 10 uncertainty, though with no large systematic
errors (unlike the Ṁacc values).

We conclude that, even though single measurements are uncertain by a
factor 10, the average ejection efficiencies obtained with the HEG95 jet mass-
loss rates and the G98 accretion rates should be relatively reliable. Multiplying
by 2 to take into account the redshifted lobe of the microjet (usually occulted
by the disk), we have:
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two jet lobes of RW Aur, as a function of distance from the star. Note the apparent
increase by a factor 10 in Ṁj within 0.7 arcsec = 100 AU of the star. From [106]
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(2Ṁj)/Ṁacc � 0.2 (12)
(2Fj)c/Lacc � 300 (13)
(2Lj)/Lacc � 0.15 . (14)

Lj= 1/2ṀjVj
2 denotes the kinetic energy flux (“mechanical luminosity”) in

one jet beam, derived from Fjc/Lacc assuming Vj� 300km s−1. The scatter
in the correlations suggests an uncertainty on these mean values of about a
factor 3.

Similar efficiencies were found by Hartigan, Morse, & Raymond (1994) for
3 atomic jets from infrared Class I sources, assuming (i) accretion is strong
enough in these embedded objects that it dominates over the stellar photo-
sphere (i.e. Lacc� Lbol), and (ii) Class I sources are close to their final T Tauri
mass � 0.8M� (as confirmed by near-IR spectroscopy of a large Class I sam-
ple; cf. [37]). Ṁacc is then given by:

Ṁacc = 1.2 × 10−7

(
R�

3R�

)(
M�

0.8M�

)−1(
Lacc
Lbol

)(
Lbol
L�

)
M�yr−1 . (15)

These 3 Class I jets are plotted as starred symbols in Fig. 6, with Ṁj recalcu-
lated as in HEG95 for consistency [14]. They extend to higher accretion rates
the trend defined by Class II jets in the Ṁj-Ṁacc and Fj -Lacc correlations,
suggesting a common ejection mechanism.

3.2 Correlation of Outflow Energetics with Lbol in Class 0 Sources

In highly embedded Class 0 protostars , which are in the early vigorous phase
of infall, we also expect Lbol to be dominated by accretion, at least up to
1000L� (see e.g. [83]). On the other hand, evaluating Ṁacc is not as straight-
forward as in the Class I phase: the stellar mass has probably not yet reached
its final value, and no near-IR photospheric spectra are available to constrain
it. We will thus examine correlations of outflow signatures with Lbol only,
taken as a tracer of Lacc.

Because the jet beam is usually heavily extincted or undetected in atomic
lines, Ṁj cannot be derived as accurately as in Class I/II jets. Molecular jets
(in H2 or CO) may severely overestimate Ṁj if they include entrained/shocked
ambient gas. More indirect measures of wind energetics in Class 0 sources
have thus been used. They all obey a correlation with Lbol, hence probably
with Lacc.

We will first discuss the most widely used indicator, namely observations
of the bipolar molecular outflows detected in low-excitation CO lines around
all Class 0 protostars. A prototypical example is shown in Fig. 8.

The low-velocity (VCO� 10 km s−1) and large mass (MCO of up to sev-
eral M�) displayed by CO outflows imply that they do trace material ejected
from the source, but rather ambient gas accelerated and swept-up by a col-
limated jet or wind (cf. [5, 68]). Several facts suggest that jet acceleration
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2.12μm emission from shocked gas is displayed as a greyscale image. The small-scale
bipolar SiO jet emanating from the Class 0 source is shown in the insert. Note how
molecular gas is shocked and accelerated all along the jet path. From [6]

is important, and perhaps dominant in Class 0 outflows [17, 70], although
a “wide-angle” component also appears required to broaden CO outflows to
their observed widths in the Class I phase and in luminous sources ([3] and
references therein). It has also been proposed that the massive CO outflows in
bright sources include a global magnetized recirculation of infalling material
(Lery, this volume).

In the following we will assume that CO outflows in Class 0 sources are
entirely accelerated by a bipolar jet, keeping in mind that our assumption will
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overestimate the jet thrust if there is also significant momentum injection by
a wide-angle wind unrelated to the jet, or by a circulating flow.

The momentum flux FCO and mechanical luminosity LCO in molecular
outflows are correlated with Lbol over 5 orders of magnitude [68]. The corre-
lation is tighter when the sample is restricted to well-collimated flows from
Class 0 sources [15], where the following least-square fits are obtained:

FCO � 4 × 10−5 (Lbol/L�)0.7M�km s−1yr−1 (16)

LCO � 0.04 (Lbol/L�)0.8 L� . (17)

Updated plots using the enlarged high-luminosity sample in Richer et al.
(2000) are shown in Fig. 9. These correlations have been confirmed and ex-
tended over a sample of 390 outflows by Wu et al. (2004).

FCO and LCO may be related to the integrated energetics of the driving
wind/jets through a model of the wind/cloud interaction, involving both a
forward and a reverse shock (see e.g. [62]). In the highly simplified case of
highly radiative and planar shocks, ram-pressure equilibrium yields Fw �
FCO when VCO	 Vj , while the total mechanical luminosity Lw≥ 7LCO(see
e.g. [14]). We thus obtain

Fwc/Lbol � 1000 (Lbol/10L�)−0.3 (18)

Lw/Lbol ≥ 0.17 (Lbol/10L�)−0.2
. (19)

The assumption of highly radiative shocks is supported by the copious emis-
sion of outflows from Class 0 sources in far-infrared lines of H2, CO, and

Fig. 9. Left panel: Correlation with the source bolometric luminosity Lbol of
the momentum rate in the swept-up molecular flow, FCO. For comparison, the top
dashed line plots the wind thrust Fw corresponding to the [O i]63μm-derived mass-
loss rates ([71], see text) assuming Vw= 150 km s−1. The bottom dashed line shows
the momentum flux in the ionized part of the jet [84]. Right panel: Correlation
with Lbol of the mechanical luminosity LCO in the swept-up molecular flow. Adapted
from [93]
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H2O, with a total luminosity close to LCO [52]. On the other hand the planar
approximation is very idealized (see e.g. the curved morphology of H2 shocks
in L 1448, in Fig. 8) hence the above relations are only approximate.

Another indirect diagnostic of wind dynamics that has been used is the
outflow luminosity in the [O i]63μm line, expected to be proportional to the
mass-flux entering dissociative shocks [63]. Assuming emission from a sin-
gle shock, current measurements suggest a correlation between Ṁw and Lbol

(see [21, 71]):

Ṁw(63μm) � 4 × 10−7(Lbol/L�)0.6M�yr−1 . (20)

With a speed of 150 km s−1, the total thrust ṀwVj appears compatible with
the FCO– Lbol correlation (see upper dashed line in the left panel of Fig. 9).
Spatially resolved [O i]63μm maps will be very useful to verify these estimates.

The thrust in the ionized part of the jet (derived from the free-free con-
tinuum flux) follows a similar correlation with Lbol, but shifted downward by
a factor 30 ([84]; lower dashed line in the left panel of Fig. 9). Unfortunately,
the jet ionization fraction is unknown. Assuming that it is a few %, as found
in Class II jets from optical line ratios (e.g. [4]) would give similar values of
Fw as above.

3.3 Ejection to Accretion Ratio as a Function
of Source Mass and Evolutionary Stage

Two interesting trends may be noted in the momentum efficiency Fwc/Lbol of
Class 0 sources: (1) a gradual decrease with increasing luminosity of the source,
by a factor 10 from 10L� to 104L� (see Fig. 9); (2) an increase compared with
later evolutionary phases, with Fwc/Lbol� 1000 in Class 0 sources of Lbol=
10L�, compared with (2Fj)c/Lacc � 300 in Class I/II jets with similar Lacc

(cf. Sect. 3.1).
Before interpreting these trends as variations in the accretion-ejection ra-

tio, it is important to realise that the mass of the driving source has an indi-
rect effect on the value of the momentum efficiency. To see this, it is useful to
rewrite Fwc/Lacc as

Fwc/Lacc = 1000

(
Ṁw

Ṁacc

)(
Vj
VK,∗

)(
300km s−1

VK,∗

)
, (21)

where VK,∗ =
√
GM�/R� is the keplerian velocity at the stellar surface.

Even if the ejection-accretion properties (which roughly determine Ṁw/Ṁacc

×(Vj/VK,∗)) remain constant, we see that the observed trends could be ob-
tained if VK,∗ increases overall with the luminosity of the source, and if it
decreases in low-luminosity Class 0 sources compared with Class I’s. Both hy-
potheses appear quite reasonable if we consider that (i) the brightest Class 0
sources are probably massive protostars of up to ≥ 10M�, (ii) the massive
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envelopes of Class 0 sources indicate an early stage of infall where the final
stellar mass is not yet assembled, in contrast to Class I sources [1]; hence one
does expect a significantly smaller M� (and VK,∗) in Class 0’s on average. At
a given Lacc, Class 0 sources would then have a higher accretion rate than
Class I’s.

Another factor possibly contributing to the lower momentum efficiency at
high Lbol is that the photospheric luminosity L� may exceed Lacc in massive
protostars (which reach the main-sequence while still accreting; [83]). This will
diminish Fwc/Lbol compared to the actual momentum efficiency with respect
to accretion, Fwc/Lacc, given by (21).

Simple calculations show that these two effects, combined, could explain
the magnitude of the decrease in Fwc/Lbol with evolutionary phase and with
Lbol, without having to invoke a major change in ejection/accretion proper-
ties [12, 61, 93]. Bontemps et al. (1996) found a tight correlation between
FCO and Menv across Class 0 and Class I sources, and inferred Ṁw/Ṁacc �
0.1
(
τenv/105yr

) (
Vj/150kms−1

)−1
, where τenv = Menv/Ṁacc is the character-

istic decay time of the envelope, assumed constant (a more detailed model is
presented in Henriksen et al. 1997). Using a different approach, Richer et al.
(2000) estimated that (Ṁw/Ṁacc)(Vj/VK,∗) � 0.3 in Class 0 outflow sources
across the whole range of Lbol.

Given the assumptions involved, this is not a definite proof that changes
in ejection/accretion properties do not occur, but it raises the theoretically
appealing possibility that a single mechanism could be responsible for the jets
observed across the whole mass spectrum and evolutionary sequence of YSOs.

3.4 Summary

• Jet energetics in Class II sources are clearly correlated with accretion.
The mean mass, momentum, and energy efficiencies are (within a factor
3): (2Ṁj)/Ṁacc� 0.2, (2Fj)c/Lacc� 300, (2Lj)/Lacc� 0.15. These values
pertain only to the optically bright part of the jet.

• Jets in low-luminosity Class I sources appear to have similar accretion
efficiencies as jets from Class II sources. The jet speeds are also similar.

• Outflow signatures in deeply embedded Class 0 sources show clear correla-
tions with the source bolometric luminosity over 5–6 orders of magnitude,
probably tracing an underlying ejection-accretion correlation. The mo-
mentum efficiency is high, Fwc/Lbol � 1000(Lbol/10L�)−0.3. Reasonable
assumptions about the stellar mass or age suggest (Ṁw/Ṁacc)(Vj/VK,∗)
� 0.1–0.3 in Class 0 sources of all luminosities, similar to Class I/II jets
within the uncertainties.

• If momentum injection in CO outflows during the Class 0 phase is dom-
inated by the jets (and not by wide-angle winds or circulation flows), the
data appear consistent with a single jet mechanism operating at all masses
and all evolutionary stages of YSOs.
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4 Comparison with HD and MHD Ejection Models

We will now discuss (in chronological order) the various hydrodynamical and
MHD processes that have been proposed for the acceleration of jets from young
stars. We will examine the problems that they encounter to reproduce the
observed jet speeds and/or large ejection-accretion efficiencies (see previous
section). Again we will focus on the case of low-luminosity Class II stars,
where the constraints are more severe. It will be concluded that only MHD
acceleration processes are readily able to reproduce observations.

4.1 Radiation Pressure

Absorption of stellar photons transfers photon momentum flux to the gas, thus
exerting a net outward force on it. Assuming an isotropic radiation source,
the net force per unit volume of gas at distance R from the source is:

frad = (Lbol/c)/(4πR2L) = κRρ(Lbol/c)/(4πR2) . (22)

Here Lbol/c is the total photon momentum entering the spherical surface
per unit time (each photon carries a momentum hν/c), and 4πR2L is the
volume of gas over which this momentum is absorbed, with L = 1/ρκR the
photon mean free-path (we denote by κR the Rosseland mean gas opacity per
gram of matter (cm2 g−1) averaged over the local radiation spectrum).

To drive a wind, the radiation pressure force must overcome the gravity
of the central star, i.e. frad > ρGM�/R

2. This condition gives the “Edding-
ton” luminosity, above which radiation pressure alone will expell circumstellar
matter:

LEdd = 4πcGM�/κR = 1200L�(M�/M�)(10cm2 g−1/κR) , (23)

where the adopted numerical value for κR is typical for ISM dust grains
near their sublimation temperature. The above condition clearly fails for low-
luminosity Class I and Class II jet sources, whereM∗ �M� and Lbol< 100 L�.
It could be fulfilled, however, in objects with very large accretion rates: Assum-
ing that Lbol is dominated by the accretion luminosity Lacc= GM�Ṁacc/R�,
the Eddington luminosity is exceeded if

Ṁacc > 4πcR�/κR = 1.2 × 10−4M�yr−1(R�/3R�)(10cm2 g−1/κR) . (24)

Thus, radiation pressure could significantly counteract gravity near young
and/or massive protostars accreting at very high rates.

A more fundamental problem with radiation pressure, which was noted
early on [68], is that it fails to explain the very large momentum transfer
efficiency observed in jets and CO outflows, where Fwc/Lbol typically reaches
100 − 1000. Integrating the expression for frad in (22) over the entire wind
volume one finds
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Frad = (Lbol/c) ×
∫
ρ(R)κR(R)dR = (Lbol/c) < τ > , (25)

where < τ > is the effective opacity of the whole wind to radiation.
The UV-optical photons emitted by the star + accretion shock are ini-

tially absorbed efficiently by the dust grains that they first encounter, i.e. the
value of κR is highest at the dust sublimation radius. However, the absorbed
energy is then re-radiated by the grains as a blackbody at their own equi-
librium temperature, i.e. mainly in the infrared. Dust absorption is less and
less efficient at longer wavelengths (it varies roughly as λ−1) so κR decreases
steeply as one moves away from the source. As a result, the effective opacity of
the wind to radiation, < τ >, does exceed 1–10 (e.g. [81]). This is insufficient
compared to observations, except perhaps for the most luminous protostars
with Lbol> 5 × 104 L�, where CO outflows have FCO� 10 Lbol/c (see [93]).
One may thus safely rule out radiation pressure as the generic driving agent
of YSO jets.

4.2 Thermal Pressure Gradients

A second HD acceleration mechanism relies on thermal pressure gradients at
the base of the wind: If the sound speed at the wind base is of order of the
escape speed, steady solutions exist where the gas is accelerated through a
sonic point and escapes to infinity with non-zero velocity. A classic example
is the Parker solution for the solar wind discussed in K. Tsinganos’s lecture
(this volume).

The temperature at the wind base required to reach a given asymptotic
speed Vj may be evaluated through energy conservation along a streamline
(Bernoulli’s invariant). Neglecting initial rotation with respect to gravity (e.g.
T Tauri stars rotate well below break-up), we have

V 2
j

2
+H = H0 −GM�/R� , (26)

where H0 and H are the specific enthalpy at the wind base and at infinity.
Following Ferreira, Dougados, and Cabrit (2006) we may calculate the cor-
responding temperature by introducing a “heating parameter” β, measuring
the ratio of enthalpy given to the flow to initial gravitational energy

β = 2(H0 −H)/(GM�/R�) . (27)

The asymptotic wind speed then writes

Vj =
√
β − 2

√
GM�/R� � 250

√
β − 2

(
M�

M�

)1/2(
R�

3R�

)−1/2

km s−1 .

(28)
Observed speeds � 300 km s−1 thus require β � 3, and we obtain the minimum
initial temperature T0 (assuming H 	 H0):
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To = 1.5 × 106

(
β

2

) (
M�

M�

)(
R�

3R�

)−1

K . (29)

Such high “coronal” temperatures may well be present at the surface of con-
vective young stars, either as a result of solar-type magnetic surface activity,
or immediately behind the accretion shock (before significant cooling occurs).
And indeed, there is recent evidence for accretion-related hot coronal winds
in T Tauri stars, in the form of of P Cygni profiles or blueshifted deficits in
Helium lines and UV lines [39, 42].

However, as first pointed out in a seminal paper by De Campli (1981), one
faces a severe problem to accelerate all of the jet mass-loss rate by this mech-
anism: The combination of high coronal temperatures and high jet densities
should produce extremely strong X-ray Bremsstrahlung emission, which is not
observed. Spherical models of thermally-driven coronal winds in T Tauri stars
from Bisnovatyi-Kogan and Lamzin (1977) predict typical X-ray luminosities
of (cf. Table 4 of [34]):

Lcorona � 5 × 1034 erg s−1

(
Ṁw

2 × 10−8M�yr−1

)2

. (30)

where the Ṁw
2 dependence stems from the n2

e dependence of optically thin
free-free radiation. Observed X-ray luminosities from T Tauri stars are LX <
1031 erg s−1, and generally 10 times smaller [43, 64]. Hence thermally driven
coronal winds cannot have mass-loss rates above a few 10−10 M�yr−1. We
have seen that typical jet mass-loss rates in T Tauri stars exceed this value
by 2 orders of magnitude.

The discrepancy between predicted and observed X-ray emission will
worsen for sources more luminous than T Tauri stars. Observations indicate
that Ṁw scales as Lbol

0.6 (see (20)). Hence the predicted Lcorona increases
as Lbol

1.2, while the observed X-ray flux increases on average only as LX ∝
Lbol [43].

The problem of excessive X-ray flux may be avoided in alternative models
where the wind is “cold” at its base (thus producing negligible X-rays), and
enthalpy is provided to the flow further up (e.g. [95]). As discussed by Ferreira
et al. (2006), the same equations as above still apply, provided the β term
also includes the specific heat input along the streamline, denoted F(s), i.e.
β = 2(F(s)+H0−H)/(GM�/R�). However, this type of model meets a more
fundamental limit of pressure driven stellar winds, namely their low efficiency.

The net “heating” power transferred to the two jet beams, each with one-
sided mass-flux Ṁj, may be written

Lβ =
β

2
GM�

R�
2Ṁj =

β

β − 2
V 2
j Ṁj =

β

β − 2
(2Lj) , (31)

where we have used (28) for Vj , and 2Lj is the mechanical power in both jets.
Since β � 3, it appears that 3 times more energy must be injected in heat
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than will eventually end up in kinetic energy ... The net heating power Lβ
may also be expressed in terms of the accretion luminosity Lacc [47] as

Lβ =
β

2
GM�

R�
2Ṁj = β

(
Ṁj

Ṁa

)
Lacc . (32)

With β � 3 and one-sided Ṁj/Ṁacc� 0.1, the net transferred power would
represent 30% of the accretion luminosity. As no heating process is “loss-free”
(e.g. radiative losses must be compensated for), the actual power required
to accelerate the jets should be several times larger, becoming comparable to
Lacc. It is very difficult to envision a heating process efficient enough to deposit
a major fraction of the accretion energy at high altitudes in the wind (in the
next section, we will see that the problem remains if pressure is provided by
MHD waves).

For completeness, it is interesting to mention another site where thermally
driven (but slow) winds may occur in YSOs: that is when a hot ionized layer
is produced at the disk surface through irradiation by a strong UV field.
Thermal balance in the photo-ionized layer establishes a temperature of order
104 K, corresponding to a sound speed of cs � 10 km s−1, so no excess X-ray
emission is predicted. Material is lifted off the disk beyond the critical radius
rg � 10 AU where the sound speed equals the keplerian speed (see [48] and
references therein). Since terminal velocities are � 3Cs = 30 km s−1, this
“disk evaporation” mechanism seems promising to explain the low-velocity
component of forbidden lines in T Tauri stars. However, it is of course unable
to provide the high speed material at several 100 km s−1 in jets. The mass-loss
rate is also very small (10−10M�yr−1 for typical T Tauri parameters; [48]).

Therefore, while thermally-driven winds from a hot stellar corona and from
the irradiated disk surface may well be present in YSOs (as it does appear
to be the case in T Tauri stars), they do not seem capable of explaining the
large ejection/accretion ratio in the high-speed jets.

4.3 Alfvén-wave Pressure Gradients

To avoid the excessive radiative X-ray losses associated with thermally driven
winds, De Campli (1981) suggested an alternative mechanism involving the
deposition of momentum of action-conserving MHD waves into the mean flow,
providing an anisotropic effective pressure gradient which accelerates the flow.

Alfvén waves appear as the most promising agent, as they are not com-
pressible and thus have large damping lengths, allowing them to deposit mo-
mentum and energy into the wind before dissipating. Since young stars possess
both deep convective layers and rather strong magnetic fields (up to 1 kG at
the footpoint of accretion columns), the excitation of MHD waves at the stellar
surface or in the magnetosphere indeed appears plausible.

De Campli calculated steady, spherical, super-Alfvénic wind solutions and
found that wind acceleration up to terminal velocities � 300 km s−1 could be
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achieved if (i) the Alfvén waves are coherent and in phase over a large solid
angle (in order not to diverge too fast), (ii) the initial B-field intensity is a few
100 G (in order to avoid non-linear wave dissipation before the wind becomes
super Alfvénic). Under such conditions, he obtained that the efficiency of
energy transfer from the wave flux to the wind was typically 10%–20%, for
B0 of 150–500 G. In other words,

Lwave � 5 − 10Lw . (33)

We have seen that the total jet mechanical luminosity is typically 0.1 of Lacc.
Therefore accelerating the jets by this process would require a luminosity
in coherent Alfvén waves Lwave of 0.5–1 Lacc. This sounds uncomfortably
large, given that incoherent Alfvén waves and dissipative waves (acoustic,
magnetosonic...) will necessarily be excited as well, inducing additional losses.
Therefore, acceleration by Alfvén-wave pressure is not an efficient driving
mechanism for YSO jets.

Note that one is basically faced with a similar efficiency problem as in
winds driven by thermal pressure gradients. This is not too surprising, as the
effect of Alfvén wave pressure gradients acts in the Bernoulli conservation
equation in a similar way as thermal pressure gradients, simply adding to
the heating term β an extra term describing the transfer of energy from the
Alfvén waves to the flow (see (38) in [34, 47]).

4.4 Magneto-centrifugal MHD Acceleration

To overcome the efficiency problem that plagues pressure-driven winds, a radi-
cally different acceleration mechanism has been envisioned, involving magnetic
torques. A strong large-scale field is anchored in a rotating object (star, disk,
infalling envelope). The magnetic field exerts a braking torque, removing angu-
lar momentum from the rotating object, and transferring angular momentum
to the outflowing gas. The centrifugal and Lorentz forces then accelerate the
flow along the field lines, making it eventually become super-Alfénic [107].

This so-called “magneto-centrifugal” acceleration process described in
greater detail in the various theoretical lectures in this volume, is “loss-free”
in the sense that all (or most) of the rotation energy extracted from the source
is eventually converted into wind kinetic energy.

Below I confront in more detail the jet observations with model predictions
for MHD acceleration along field lines anchored (1) in the disk, or (2) in the
star. Models where the field lines are anchored in the infalling envelope are
discussed in the lecture by Lery (this volume).

1- Field Lines Anchored in the Disk

Magneto-centrifugal ejection from accretion disks was first proposed as the
source of YSO jets and outflows by Pudritz and Norman (1983). This hypoth-
esis has been studied in great detail since then (see [87] for a comprehensive
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review). One of its most attractive aspects is the possibility of a high ratio
of jet to accretion power. If wind magnetic torques extract most of the an-
gular momentum from the accretion flow, the jet mechanical power will be
essentially the rate of energy removal between the outer and inner radii of the
launch region (see e.g. [45]):

2Lj � −GM�Ṁa(rout)
2rout

+
GM�Ṁa(rin)

2rin
� GM�Ṁa(rin)

2rin
(34)

where the 1/2 factor derives from the fact that the total (gravitational +
kinetic) specific energy is −GM�/2r for a keplerian flow. Thus, one can easily
reach the high observed efficiencies 2Lj� 0.1 Lacc if the inner edge of the wind
launch region is at rin � 5 R�.

The final jet speed depends on the “magnetic lever arm parameter”
λ � (rA/r0)2, which measures the ratio of extracted vs. initial specific an-
gular momentum (here r0 is the launch radius and rA the (cylindrical) Alfvén
radius). When all of the Poynting flux has been transferred to the matter, the
final jet speed is given by [11]:

Vj =
√
GM�/ro

√
2λ− 3 . (35)

The typical observed maximum jet speeds � 300 km s−1 would then indicate
λ � 5 for rin � 5 R� in a typical low-mass YSO. Such a moderate value of λ
is compatible with current estimates/upper limits on rotation speeds in jets
(see [47] and references therein).

Self-similar models including the keplerian disk vertical equilibrium show
that the value of λ is inversely related to the efficiency of mass-loading onto
the field lines through λ � 1 + 1/2ξ, where ξ = dlog(2Ṁj)/dlogr, as long as
ξ 	 1 [44]. Hence observed jet speeds would suggest a rather high mass-load
with ξ � 0.1. The total ejection to accretion ratio is then

2̇Mj/Ṁacc = ξ ln(rout/rin) , (36)

compatible with observations if rout/rin ≤ 10. Note that this constraint ap-
plies only to the launch region producing the observable optical jet. Material
launched from radii beyond 1 AU would escape detection if it is molecular, or
too cold to emit.

A high mass-load with ξ � 0.1 can only be achieved with a source of
heating near the disk surface (Casse & Ferreira 2000; see also Ferreira’s lec-
ture, this volume). The required heating only represents a tiny fraction of
the accretion power, so it is energetically possible, but its nature remains to
be clarified (possible sources include X-rays from the star, and dissipation of
MHD turbulence).

A possible variant proposed by Shu et al. (1994) is that the centrifugal
wind is launched not from an extended disk region, but from a narrow annu-
lus at the inner edge where the disk is truncated by the stellar magnetosphere.
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The flow is highly non self-similar, hence the Alfvén surface is obtained from a
prescribed mass-loading function. The asymptotic speeds would be � 200–350
km s−1 (λ � 3 − 6) for a ratio 2Ṁj/Ṁacc= 0.3 [96], also compatible with ob-
servations. The main observable difference with winds launched over a large
range in disk radii is that it predicts higher poloidal speeds and smaller rota-
tion signatures in the outer regions of the jet [47, 89, 97].

2- Field Lines Anchored in the Star

Hartmann & MacGregor (1982) proposed that energetic flows from young
stars could be powered by magneto-centrifugal ejection from the surface of
magnetized protostars rotating close to break-up. Concentrating on very mas-
sive protostars (M�= 10M� and Lbol� 5×104L�) they obtained wind speeds
of a few 100 km s−1 for a 10 G field, and outflow momenta compatible with
observations for a rotation rate at ≥ 90% of break-up. The attractive aspect is
that it provides a natural means to spin-down protostars in less than 105yrs,
as required by the slow rotation rates of Class I sources [28]. Matt & Pudritz
(2005) recently proposed that strong magnetized stellar winds from T Tauri
stars could similarly prevent them from spinning-up by accretion.

One still faces two problems in trying to explain all YSO jets in this
picture: (1) the correlation with accretion would have to be somewhat indirect,
as the mass-loss rate is governed by the density at the slow point near the
stellar surface, not by the density of any accretion flow, (2) the efficiency of
the mechanism depends critically on the stellar rotation rate. For example,
Hartmann & MacGregor (1982) find that the mass-loss rate and the wind
thrust drop drastically (by, respectively, 6 and 4 orders of magnitude) when
the rotation rate decreases only slightly, from 0.9 to 0.75 of break-up, all other
parameters being held constant. Increasing the B-field increases the terminal
speed, but has no effect on the mass-loss rate. This would not easily explain
why jets from Class I/II stars have similar momentum efficiencies (within a
factor 3–10) as outflows from Class 0s, unless the Class 0 also rotate well
below break-up — in which case the problem of initial protostellar spin-down
remains unsolved. Compensating the slower rotation by changes in stellar
parameters (e.g. density and temperature at the slow point) would require
very fine tuning.

An alternative model possibly solving both problems is the Reconnexion
X-wind (“ReX wind”) explored by Ferreira et al. (2000). It assumes that
matter is loaded onto stellar field lines not at the stellar surface, but very near
the corotation point in the disk where the keplerian angular velocity matches
the stellar rotation frequency. The (sporadic) mass-loading would occur by
magnetic reconnexion between closed stellar field lines and open disk field,
at an equatorial magnetic X-point in the disk (see Fig. 9 and Sect. 4.6 in
Ferreira, this volume). As in the Hartmann & MacGregor case, this wind is
ultimately powered by the spin-down of the star, not by accretion energy.
However, mass-loading in the “ReX wind” is now occuring in the disk, hence
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some correlation of the ejected mass-flux ṀX with the accretion rate might be
expected. Furthermore, the corotation point is by definition always rotating
at break-up, so the mass-loss efficiency may not vary excessively.

Assuming 2ṀX/Ṁacc � 0.1, a magnetic lever arm parameter λ � 3, and
an initial accretion rate of 10−5M�yr−1, Ferreira (2000) finds that a low-mass
protostar is spun-down to 20%–10% of break-up in 105−106 yrs, as observed,
while the disk accretion rate drops to 10−7–10−8 M�yr−1, consistent with
the mean behavior of Ṁacc in T Tauri stars [60]. The terminal speeds of
150–300 km s−1 agree with jet observations. In this model, the open disk
field is assumed to be constantly replenished by an MHD disk wind operating
beyond corotation, so one should in fact observe both contributions (sporadic
ReX wind and steady disk wind) in the jets.

4.5 Relaxation of Twisted Magnetospheric
Field (“Magnetic Tower”)

The last category of ejection mechanisms proposed in YSOs relies on the in-
teraction of closed loops of magnetospheric stellar field with the inner disk
near the magnetopause, in the configuration where the stellar magnetic mo-
ment is anti-parallel to the disk field, or when there is no significant disk field
(see Fig. 9 in Ferreira, this volume).

In this geometry, any small differential “twist” between the star and the
inner disk edge triggers a huge stretching of the magnetic loops at an an-
gle of 60◦ from the polar axis [73]. The complex time-dependent evolution
of this interaction has been the subject of intensive numerical simulations,
nicely reviewed in Pudritz et al. (2006). The general conclusion is that the
resulting outflows are essentially uncollimated, hence the formation of a tall
jet (“magnetic tower”) by this process would require external confinement
(e.g. [65, 74]). We have seen this is problematic around Class II sources. Axial
narrow “jets” are seen in some simulations, but they appear to be an inter-
mittent feature. Recent laboratory experiments also suggest that the polar
“jet” is very transient and susceptible to kink instabilities [69].

Simulations by Matt et al. (2002) do not reveal a clear correlation between
the disk density and the mass-flux periodically injected inside the “magnetic
tower” by magnetic reconnexion, unlike what would be needed to reproduce
the accretion-ejection correlation. However, as the twisted loop stretches out,
it provides open field lines to the inner disk, possibly allowing the launching of
an accretion-powered magneto-centrifugal disk wind there [98]. The properties
of such an MHD disk wind were described above in Sect. 4.4.

4.6 Summary

• Acceleration by radiative pressure on dust is excluded, as it cannot provide
the high momentum efficiencies Fwc/Lbol> 10 observed in YSO jets.
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• Hydrodynamic acceleration of the jets by thermal or wave pressure gradi-
ents requires an energy input rate in heat or coherent Alfvén waves that
is at least comparable to Lacc. This sounds difficult to achieve given that
some additional losses (radiative cooling, excitation of dissipating waves)
will necessarily occur. More tenuous ejections from the stellar corona or
the disk surface are however possible (and likely).

• MHD magneto-centrifugal acceleration offers the most efficient acceler-
ation process. An MHD disk wind launched around 5R� and beyond
most readily explains the high ejection-accretion efficiencies 2Lj/Lacc≥
0.1 at all phases of evolution, as well as observed jet speeds. Cen-
trifugal acceleration along open stellar field-lines could also contribute
significantly to the observed jets, if it is the main agent responsible
for braking down young stars. The resulting MHD jets will be self-
collimated.

• MHD relaxation of twisted magnetospheric loops threading the inner disk
edge may result in plasmoid ejection at mid-latitudes, but the correla-
tion with accretion rate is unclear, and the outflow is not intrinsically
collimated.

5 General Conclusions

We have found that hydrodynamic pressure cannot explain the collimation
properties of jets in sources with and without infalling envelopes. Hydro-
dynamic acceleration (by pressure gradients) also does not appear efficient
enough to reproduce the high ratios of jet momentum and jet power to accre-
tion luminosity that are observed at all phases of evolution of YSOs. There-
fore, MHD processes appear definitely needed to collimate and accelerate YSO
jets.

Among possible MHD processes, magneto-centrifugal driving appears as
the most promising, as it provides both acceleration and self-collimation com-
patible with observations. The observed accretion-ejection efficiencies suggest
that launching occurs from the inner disk regions, where it would be directly
powered by the release of accretion energy. Such a process could be universal
to young accreting stars of all masses and ages, and could start very early on
after the formation of a hydrostatic stellar core [7, 76, 87, 104].

The fact that young stars do not spin up despite continuing accretion
has lead to suggestions that a centrifugal MHD wind along open stellar field
lines might also be present, perhaps as a (reconnexion-fed) inner flow within
the disk wind. Simple calculations indicate that the contribution to observed
jet mass-fluxes could be substantial, although further modelling of the mass
loading and dynamics is critically needed.

MHD relaxation of twisted magnetospheric loops does not appear to pro-
duce by itself the launching of a jet flow comparable to observations, but it
could provide the open field lines required for centrifugal acceleration.
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Therefore, the ubiquitous existence of YSO jets appears intimately related
with magnetic extraction of angular momentum from the inner disk around
(and possibly the surface of) accreting young stars, from the earliest stages
of star formation all the way through the pre-main sequence classical T Tauri
phase.
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1 Introduction

Stars are born in molecular clouds. The mechanisms involved in the transfor-
mation of a cloud core into a star and the various evolutionary phases that the
star-disk systems go through have been the center of attention of many recent
studies (see recent reviews from the Protostars and Planets V conference [49]).

The protostar and disk are formed deeply embedded in their original col-
lapsing cloud. From there on, in the case of low-mass stars, most of the stel-
lar mass will be acquired through accretion from the disk. Initially, material
still falls from the surrounding envelope to the disk, while the disk accretes
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material into the star. At the same time, winds, jets and molecular outflows
are driven by the young star-disk system and help dissipating the surrounding
cloud. When the Pre-Main Sequence (PMS) star becomes optically visible, it
is called a T Tauri star (TTS) if its spectral type is later than F or a Herbig
Ae/Be star (HAeBe) if it has spectral type between B and F. At that point,
the star still accretes from the disk, but at lower accretion rates (typically
Ṁacc ∼ 10−8 M� yr−1) than in the protostellar phase.

The gas in the circumstellar disk will eventually vanish, but it is not
actually clear what is the main cause of the gas dissipation. It can be just
mostly accreted to the star, part of it may go into giant planets, it can also
be disrupted by tidal instabilities and gaps created by planet formation or
dissipated by UV photoionization by the central star. Some T Tauri stars,
known as weak-lined T Tauri stars do not exhibit accretion disks at very
early ages (∼ 1 Myr) while others, the Classical T Tauri Stars (CTTSs), at
the same ages and spectral types still do. Being brief or lasting longer, the
star-disk interaction has a significant impact on early stellar evolution. It pro-
vides mass through accretion, helps regulate the angular momentum transfer
and may be in part responsible for winds and jets observed in young stars.

In this contribution we will focus on accretion processes related to CTTSs.
In Sect. 2, we will review the past and present models used to explain
the observed characteristics of CTTSs. We will discuss the recent magnetic
field measurements in Sect. 3 and the spectral diagnostics of magnetospheric
accretion and accretion powered winds (Sect. 4). We will also emphasize in
Sect. 5 the dynamical aspect of magnetospheric accretion and show how the
models and simulations are dealing with such a characteristic.

2 Classical T Tauri Star Models: Past and Present

Classical T Tauri stars are young, optically visible, low mass stars that show
signs of accretion from a circumstellar disk. They are a few million years old
at most and still contracting down their Hayashi tracks. CTTSs show Li I
in absorption, which is a telltale of youth for low mass stars. They present
broad permitted emission lines and they are spectroscopic and photometrically
variable. They show ultraviolet (UV), optical and infrared (IR) excesses with
respect to the photospheric flux. They have strong magnetic fields (∼2 kG)
and are X-ray emitters. Over the years, as the observational characteristics
above were discovered, several models were proposed to explain the CTTS
phenomenon.

2.1 Boundary Layer Models

Lynden-Bell and Pringle (1974) [36] presented the idea that viscous dissipation
in disks might be responsible for the IR excess. They also proposed that the
UV excess could be produced in a shear equatorial boundary layer between the
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rapidly rotating disk (at more than 200 km s−1 just above the photosphere)
and the slowly rotating star (v sin i ∼ 10 km s−1, typically). In the boundary
layer, the accreting material loses its kinetic energy in a series of shocks and
emits a luminosity comparable to that released in the rest of the accretion
disk, but over a very small area. Therefore the boundary layer must be much
hotter than the rest of the disk, and so it will radiate at shorter wavelengths,
peaking in the UV. It was only in the 80’s that the idea became popular with
the observational advances in UV and IR.

However, the boundary layer model (BLM) soon faced several observa-
tional challenges that it could not overcome. These models could not explain
the inverse P Cygni profiles commonly observed in CTTS permitted emission
lines, which show blueshifted emission peaks and redshifted absorption com-
ponents at 200–300 km s−1 reaching below the continuum. The redshifted
absorption component is thought to come from material that is receding
from us towards the star at near free-fall velocities. In the BLM, material
is supposed to slow down from the disk to the star, producing small radial
velocities.

The BLM also could not explain the spectral energy distribution (the
observed flux distribution as a function of wavelength) of many CTTSs that
are only fitted by disk models without the inner disk regions (a disk hole). In
the BLM, the disk is expected to continue down to the stellar photosphere.

These models had also difficulties to explain why CTTSs are generally
found to be slow rotators (v sin i ∼10 km s−1), since the accretion process
should only add angular momentum and therefore spin-up the star.

2.2 Wind Models

Wind models were also suggested to explain the CTTSs emission line spec-
tra [23, 24, 44]. These models tended to predict mostly P Cygni profiles (i.e.
redshifted emission peaks and blueshifted absorption often going below the
continuum) for the main emission lines. Consequently, they had a hard time
generating the rather symmetric emission line profiles with blue-shifted fea-
tures that do not reach the continuum, which are the most commonly observed
in the main emission lines of CTTSs. The early wind models also tended to
predict upper Balmer lines with strong wind absorption components and could
not explain the spectra of many CTTSs that show these lines with very faint
or even without blueshifted absorption. Wind models could not produce the
observed inverse P Cygni profiles either.

All these arguments against the wind models do not mean that there is no
wind in CTTSs, or no wind contribution to the observed profiles of CTTSs.
It just indicates that the wind is not the main responsible for the permitted
emission line profiles. The narrow blueshifted absorptions, however, remain
wind features. They are attributed to cool outflowing gas that is further from
the star than the accretion dominated emission.
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2.3 Magnetospheric Accretion Models

Nowadays magnetospheric accretion models are the consensus to explain the
many observed characteristics of CTTSs [25, 40, 41, 53]. These models are
based on the idea of circumstellar disk accretion onto a magnetized young
star. It is assumed that the stellar magnetic field is predominantly dipolar on
the large scale and that it is strong enough to disrupt the disk at the so-called
truncation radius or magnetopause, typically a few stellar radii from the star,
where the magnetic pressure overcomes the ram pressure due to accretion.
This forms a magnetospheric cavity (Fig. 1).

The accreting material that goes spiraling down the disk eventually reaches
the inner disk region. If it is sufficiently ionized, its motion will then be con-
trolled by the magnetic field. Part of it is ejected in a wind, and part is accreted
onto the star along magnetic field lines, forming accretion columns.

As the near free-falling material hits the stellar surface, a strong accretion
shock (a hot spot) is produced. The shock emission is responsible for the UV
and optical continuum excess, known as veiling. The broad emission lines come
from the accelerated material in the accretion columns and forbidden emission
lines are formed in the wind. The IR excess comes from the combination of
viscous dissipation and reprocessing of stellar and/or accretion radiation by
the disk.

For accretion to occur, the truncation radius must be smaller than the
corotation radius Rco (radial distance in the disk where the keplerian angular
velocity matches the stellar angular velocity). Only inside Rco will the net
force allow the material to accrete. Outside Rco the stellar angular velocity is
greater than the Keplerian velocity, so that any material there which becomes

3R 12R 1 AU

ionized
wind

TTS

10–7M  /yr

Fig. 1. Sketch of magnetospheric accretion in CTTSs (from [10])
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locked to the stellar field lines will experience a centrifugal force that tries to
throw the material away from the star (disk-wind).

This is the basic concept of magnetospheric accretion in CTTSs. So to
begin with, we need strong stellar magnetic fields.

3 Magnetic Fields Measurements:
Theory vs. Observations

Traditional magnetospheric accretion theories suggest that, when the star-
disk system is in equilibrium, the stellar rotation rate will be determined by
the Keplerian rotation rate near the truncation radius. The star is locked
to the disk and these are therefore often called disk locking theories. Under
the assumption that such an equilibrium situation exists, Königl (1991) [33],
Collier Cameron & Campbell (1993) [11] and Shu et al. (1994) [53] have an-
alytically analysed the interaction of a dipolar stellar magnetic field aligned
with the stellar rotation axis and the inner accretion disk. Johns-Krull et al.
(1999b) [29] obtained analytical expressions for the magnetic field strength
in terms of the stellar mass and radius, the rotation period of the star and
the mass accretion rate (see (2), (3) and (4) of [29]). Since these quantities
have been estimated for several CTTSs, the models can then predict stellar
magnetic field values that can later be compared with values obtained from
the observations (Fig. 3).

Magnetic field measurements most of the time make use of the Zeeman
splitting effect. When an atom is in the presence of a magnetic field, a spectral
line is shifted in three components: two σ components, split to either side of
the line center and a π component, which is unshifted. The wavelength shift
of a σ component is given by:

Δλ =
e

4πmec2
λ2gB

As shown above, the Zeeman shift has a λ2 dependence, while Doppler line
broadening mechanisms have just a λ dependence, so it is a good idea to look
for magnetically sensitive lines in the IR in order to enhance the Zeeman effect
compared to Doppler broadening. Making use of this characteristic, Valenti &
Johns-Krull (2004) [58] fitted synthetic line models with magnetic field to
magnetically sensitive Ti I lines in the IR spectra of CTTSs. An example
of their analysis is shown in Fig. 2 for the CTTS BP Tau. The model with
no magnetic field (single line) does not fit the data, while the model with a
distribution of magnetic fields in the stellar surface, going from zero up to 6
kG, with a mean field value of 2.1 kG, gives a very good fit to the observations.
In order to constrain non-magnetic broadening mechanisms Valenti & Johns-
Krull (2004) [58] also fitted various CO lines that lie near the Ti I lines at
2.3 microns and have negligible Landé factors, which means they are Zeeman
insensitive. As can be seen in the bottom panel of Fig. 2, the CO lines are
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Fig. 2. An IR spectrum of the CTTS BP Tau (histogram) compared with synthetic
line models with magnetic fields (doubled curve) and without (single curve). The
inset histogram shows the distribution of magnetic fields used over the entire surface
in the magnetic models to reproduce the observed spectrum. The Landé-g factor is
given for each atomic line. Figure taken from [58]

much narrower than the Ti I lines and are well fitted by both the non-magnetic
and the magnetic models, as expected. The surface magnetic field distribution
of several TTSs has now been measured fitting the IR spectra with synthetic
line models [29, 30, 32, 61].

The results presented in Fig. 2 show that the Zeeman broadening of mag-
netically sensitive lines depends on the distribution of magnetic field strengths.
However they have limited sensitivity to magnetic geometry. On the other
hand, circular polarization measurements for individual spectral lines are sen-
sitive to magnetic geometry, but they provide limited information about the
field strength.

The idea to use circular polarization is that, when viewed along the axis of
a magnetic field, the Zeeman σ components are circularly polarized, but with
opposite helicity, while the π component is absent. If one magnetic polarity is
dominant at the visible surface of the star, net circular polarization is present
in Zeeman sensitive lines. In that case, the magnitude of the wavelength shift
is proportional to the surface average line of sight component of the magnetic
field.

Most magnetospheric accretion models assume that the magnetic fields
of TTSs are dipolar. It is true that the higher order multipoles fall off more
rapidly than the dipole, so that at the inner edge of the disk, typically at
a few stellar radii from the star, the dipole is likely to dominate. But close
to the stellar surface, the magnetic field geometry is probably more com-
plicated, with the presence of many multipole components. In support to
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that idea is the fact that most spectropolarimetric studies of cool stars do
not clearly detect circular polarization in photospheric absorption lines (that
form all over the surface of the star), within an upper limit of about 100 G
[8, 59].

However, Johns-Krull et al. (1999a) [29] detected circular polarization in
CTTSs emission lines that form predominantly in the accretion shock. There
we are not looking at the whole stellar surface, but we are isolating a small
portion of it. The strongest circular polarization signal appears in the nar-
row emission component of the He I line (5876 Å). In contrast to the pho-
tospheric features, which show no net field polarity in the line of sight, the
narrow helium emission arises in a region with mean line of sight fields from
1–2.75 kG that exhibit a high degree of organization, indicating that a sin-
gle polarity dominates in the He I formation region. Valenti & Johns-Krull
(2004) [58] have further measured the line of sight component of the mag-
netic field on six consecutive nights for four stars. The measured values vary
smoothly on rotational timescales, implying a lack of symmetry about the
rotation axis in the accretion or the magnetic field, or both. Simple models
consisting of a single spot at a given latitude that rotates with the star fit the
data quite well.

The complicated surface topology of magnetic fields in CTTSs results in
no net polarization in photospheric absorption lines. However, the accreting
material apparently follows the dominant polarity of the field at the inner
disk edge, so that emission lines formed in the accretion shock preferentially
illuminate a dominant polarity component of the field, producing substantial
circular polarization in these emission lines. The dominant polarity component
near the truncation radius is expected to be the dipole component, as pre-
dicted by the magnetospheric theories, if the truncation radius is far enough
for it to dominate over the others. However, Gregory et al. (2006) [21] and
Jardine et al. (2006) [26] have shown that accretion is likely to occur along
non-dipolar field lines.

In Fig. 3 are shown the most recent compilation of mean magnetic field
intensities measured by Johns-Krull and collaborators together with the pre-
dicted field strengths from Shu et al. (1994) [53]. We can readily see that
the mean fields do not agree with the theory. A hint to why we do not see
such a correlation may come from the field topology measurements, since they
indicate the magnetic field on the TTSs surface is not globally dipolar. The
dipole component may then actually be much less important than predicted
by the theories. There is therefore the need to include non-dipole fields in
the magnetospheric accretion theory to try to reconcile theory and observa-
tions. This was done by Johns-Krull & Gafford (2002) [31] who compared the
relationships predicted by magnetospheric accretion theories among stellar
mass, radius, rotation period and disk accretion rate and the observed rela-
tions from several studies of CTTSs. They were only able to reproduce the
observed correlations after including non-dipole field topologies in the model
of Ostriker & Shu (1995) [45].
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Fig. 3. Observed mean magnetic field strength as a function of the predicted field
strength for the theory of Shu et al. (1994) [53]. There is no statistically significant
correlation between the observed and predicted magnetic field strengths. Figure
taken from [7]

4 Spectral Diagnostics of Magnetospheric Accretion

4.1 Emission-line Profiles

The magnetic field distribution and topology is one of the most important
ingredients to understand and correctly describe the magnetospheric accre-
tion process in CTTSs. There are, however, several other diagnostics of mag-
netospheric accretion, such as the permitted emission line profiles of CTTSs
that are supposed to be formed in the accretion funnel.

These emission line profiles show a wide variety of morphologies (symmet-
ric, double-peaked, P Cygni, inverse P Cygni) and they can vary from one type
to another in a single star. In common to all types of profiles is the broad line
width with several 100 km s−1 indicative of bulk motion of the circumstellar
material. The emission line profiles are important because they encode both
geometrical and physical information on the accretion process and its rate. So
a straightforward idea is to use them to test and refine the magnetospheric
accretion models.

The standard magnetospheric accretion models assume an axisymmetric
geometry in which the density structure along the funnel is calculated using a
steady mass accretion rate and free-fall along dipolar field lines, which come
from a geometrically thin but optically thick disk at a range of radii inside
the co-rotation radius. It is generally assumed that the kinetic energy of the
accreting material is completely thermalized.
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The radiative transfer calculations are typically performed with the Sobolev
approximation i.e. assuming that the contributions to a spectral line formation
at any given frequency occur locally, that is valid under the assumption of
high velocity gradients. The temperature structure, which is a significant
parameter, is unfortunately poorly constrained. A simple adjustable volu-
metric heating rate combined with a schematic radiative cooling rate, which
leads to a temperature structure that goes as the reciprocal of the density is
often adopted [25, 40, 41, 56]. The magnetospheric accretion models may also
include rotation and line damping.

Actually the models are able to compute a huge variety of profiles, as
observed, and the calculations are performed for several different atomic
species, such as hydrogen, sodium, calcium and oxygen. Several hydrogen
transitions in the optical and IR have also been calculated.

Even with all the simplifications and assumptions that are made in the
models, it is fair to say that the magnetospheric accretion models do a very
good job in reproducing the main observed characteristics of the permitted
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emission line profiles (see Fig. 4), such as the broad line widths and the occa-
sional inverse P Cygni profiles [40, 41].

The models are also often able to reproduce several lines simultaneously,
which allows to better constrain the many fitting parameters. Care must be
taken to determine the accretion and magnetospheric parameters with only
one line like Hα, which is the most commonly used, since it is vulnerable to
have contributions from outflows (see [2, 3]) and it may also be significantly
spatially extended.

Lately the magnetospheric accretion model has been used to determine
mass accretion rates across the mass spectrum, from Herbig Ae stars, UX
Ori being a good example [42] and also to very low mass objects and brown
dwarfs [43].

In general, the fit to the emission component of the observed line profiles
is quite good but there are exceptions like DR Tau, which is a high mass
accretion rate system (see Fig. 4). In that case, it has been suggested by
Muzerolle et al. (2001) [41] that the wind can give an important contribution
to the emission line profile.

4.2 Accretion Driven Winds

It is widely accepted that winds are important ingredients of star formation,
but the wind contribution to the line profiles of CTTSs has not been very much
studied in the last years, because of the apparent importance of accretion to
the observed profiles.

Alencar et al. (2005) [2] have recently shown that the observed emission
profiles of RW Aur, a high mass accretion rate CTTS, can have a strong
wind contribution, as predicted by Muzerolle et al. (2001) [41] for such star-
disk systems. In Fig. 5 we show the magnetospheric accretion and disk wind
profiles compared with mean Hα and Hβ observations of RW Aur. We can see
that the disk wind models fit better the observations, indicating that, in this
case, the wind contribution is important. Alencar et al. (2005) [2] calculated
the magnetosphere and wind models separately, while to be consistent, the
accretion and wind contributions must be calculated at the same time, as
Kurosawa et al. (2005, 2006) [34, 35] have recently done for the first time. They
computed hybrid models where both effects are taken into consideration and
they are able to reproduce all types of emission line profiles observed in CTTSs
(see Fig. 5 of [7]). Only hybrid models are able to simultaneously reproduce
the emission and the narrow blueshifted absorption, which is attributed to
cool outflowing gas that is further from the star than the accretion dominated
emission. The narrow blueshifted absorption features exhibit a great variety in
depth, width and velocity from one star to another, although there is a general
tendency for them to be more prominent in stars with high mass accretion
rates [14], indicating that these are not purely stellar winds but are powered
by an accretion/outflow connection.
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Fig. 5. RW Aur mean observed line profiles are shown as solid lines. Left: magneto-
spheric accretion profiles (dashed and dash-dotted lines). Right: disk-wind profiles
(dashed lines). From Alencar et al. (2005)

Recently another spectral wind diagnostic has been identified with the
confirmation of the presence of a hot helium wind among stars with high
accretion and outflow rates provided by profiles in the near infrared triplet
line of He I 10830 Å [15].

In Fig. 6, kindly provided by Suzan Edwards prior to publication, we see
the He I 10830 Å line of three CTTSs (DR Tau, AS 353 A, DO Tau) and one
WTTS (V819 Tau). The CTTSs present very impressive P Cygni profiles with
blueshifted absorptions going way below the continuum in a spectral region
where the continuum is mostly due to the star. At 1 micron the accretion
shock does not contribute to the continuum and the IR excess from the disk
is still rising and does not contribute much either. In Fig. 6 we can see that
for DR Tau, AS 353A and DO Tau the blueshifted absorption reaches then
into the stellar continuum over a continous and broad velocity range going
from near the stellar rest velocity to the terminal wind velocity, as traced by
the forbidden emission lines. In order to have helium emission we further need
high temperatures (T > 10 000 K). So the acceleration region of the helium
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Fig. 6. Observed He I 10830 Å line profiles of 3 CTTSs (DR Tau, AS 353 A, DO
Tau) and 1 WTTS (Suzan Edwards, private communication)

wind is close to the star, occulting a significant portion of it, in a region of
high temperature.

One possibility is that the helium wind comes from polar/coronal regions.
This would allow magnetospheric accretion funnels to co-exist with such a
hot wind. It would actually be difficult for disk wind material to absorb the
radiation from the stellar disk at all velocities, from the rest to the terminal
wind speed. As extreme examples, TW Hya and T Tau are pole on CTTSs and
they also present the He I (10830 Å) line with the same strong and extended
blueshifted absorptions (see [12]). In those cases it is almost impossible for
an inner wind to be of disk origin and produce such absorptions of the stellar
continuum.

If the wind arises from the stellar coronae it would not be a normal stellar
wind but rather an accretion powered stellar wind, since this wind is strongest
in stars with the highest mass accretion rates. Low mass accretion rate CTTSs,
like AA Tau, show He I (10830 Å) profiles that are compatible with a disk
wind with narrow blueshifted absorptions much like in Hα (Suzan Edwards,
private communication) and WTTSs do not show any absorption or emission
at all, as can be seen in Fig. 6 for V819 Tau.

The picture of the star-disk interaction in the PMS that is emerging from
observational results includes magnetospheric accretion, a disk wind, and an
accretion powered stellar wind, as discussed by Matt & Pudritz (2005) [39]
and by Ferreira et al. (2006) [18] and shown schematically in Fig. 1.
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4.3 Accretion Shock Evidences

Another key parameter of the magnetospheric accretion model is the pres-
ence of accretion shocks that create hot spots at the stellar surface where
the infalling material reaches the star. Hot spots were initially inferred from
rotational modulation of light curves by Bouvier et al. (1995) [4]. In order to
ensure that the photometric modulation was mainly caused by hot spots and
not by cold ones, the temperature and minimum size of the spots responsible
for the stellar brightness modulation were derived by comparing the observed
amplitude of variability in different wavelengths with hot and cool spot models
calculated with various temperatures and spot sizes. Hot spot models failed
to reproduce the observations of WTTSs, while both hot and cool spots can
be responsible for the observed modulation of CTTSs. Half of the observed
CTTSs in Bouvier et al. (1995) [4] had amplitudes consistent with a modula-
tion by cool spots, and half by hot spots. Their conclusion was that CTTSs
present both cool and hot spots, while WTTSs only show evidence for cool
spots.

Another evidence for accretion shocks comes from the successful fitting of
the UV and optical excesses observed in CTTSs by accretion shock models
([9, 22]). The shape of the excess can be understood as optically thick emission
from the heated photosphere below the shock and optically thin emission from
the preshock and postshock regions. According to the models, the accretion
shock will initially have T ∼ 106 K and emit in soft X-rays, which are repro-
cessed both by the accretion stream and the stellar photosphere, accounting
for the optical and UV continuum emission. An important product of such a
fitting is the reliable determination of mass accretion rates, which can later be
used to calibrate other accretion diagnostics that are easier to measure than
the UV excess, such as the luminosity of emission lines like Paschen β.

4.4 X-ray Emission

Young stars are bright in X-rays from Class I to Class III stages. They can
be up to 104 times more luminous than the Sun in X-rays, which are thought
to be mainly produced by magnetic reconnection flares [16].

In the magnetic reconnection, oppositely directed magnetic field lines are
brought together into a strong eddy that pushes away the gas. The magnetic
reconnection changes the topology of magnetic fields by breaking magnetic
field lines and reconnecting them in a different way. In doing so, it can liberate
magnetic energy into other forms such as kinetic energy, heat and light.

Recently a collaboration known as the Chandra Orion Ultradeep Project
(COUP) led by Eric Feigelson (Penn State Univ.) has obtained 13 days of ob-
servations of the Orion Nebular Cluster with the Chandra X-ray observatory
(ApJS Volume on the COUP project [17, 47]). They confirmed that there is
no X-ray quiet young population and that the X-rays from young stars are
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mainly of enhanced solar-like coronae origin, but they can also have contri-
butions of soft X-rays from accretion columns and of intense flares from the
reconnection of field lines taking part in the magnetic star-disk interaction.
Such intense flares are predicted by numerical simulations of the star-disk
interaction, where differential rotation between the stellar field lines and the
inner disk are shown to lead to the lines expansion, opening and reconnection
(see Sect. 5.1).

CTTSs are known to be less X-ray active than WTTSs but this difference
is not due to the fact that CTTSs rotate more slowly than WTTSs, since in
the PMS no activity-rotation correlation is observed, while it is in the later
phases of stellar evolution [47]. The reason for such a difference is still un-
der debate and could be due to X-ray absorption by circumstellar features
around CTTSs. Accretion could also change the magnetosphere itself, loading
the field lines and therefore not allowing the high density plasma to reach very
high temperatures needed to emit X-rays. Another possibility under discus-
sion is that accretion may change the stellar structure, inhibiting the dynamo
process and therefore affecting the rising of magnetic field lines at the stellar
surface [47].

5 The Future of CTTS Models

In terms of observational evidences, we can say that magnetospheric accre-
tion is overall in a robust ground. We have seen that strong magnetic fields
are present in CTTSs [58]. It was shown that accretion columns are inferred
through the observation of inverse P Cygni profiles with redshifted absorp-
tions at several hundred km s−1 [13], which indicates that the gas is accreted
onto the star from a distance of a few stellar radii and we saw that emission
lines are formed, at least partially, in accretion funnel flows [25, 40, 41]. Ac-
cretion shocks are inferred from the rotational modulation of light curves by
bright surface spots [4] and accretion shock emission models have also suc-
cessfully reproduced the observed spectral energy distribution of optical and
UV excess [9, 22].

However some caveats do apply to the models and there are aspects such
as the variability of the accretion process that are not taken into account by
the very good but steady state, axisymmetric accretion models.

The first and probably one of the most important problems is that the
temperature structure of the accretion flow is essentially arbitrary, and this
has a significant impact on the line source functions and consequently on the
profiles themselves.

Martin (1996) [37] showed that in the funnel, the heating is dominated by
adiabatic compression and the cooling comes mainly from free-free emission
(Bremsstrahlung radiation) and line emission from ions such as CaII and MgII.
The temperature structure he obtained is quite different from the one com-
monly used in the magnetospheric accretion models. However, the somewhat
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arbitrary temperature law proposed by Hartmann et al. (1994) [25] yields pro-
files that definitely look like the observations, while the Martin (1996) one,
which was calculated consistently, does not. There is therefore the need to fur-
ther analyse the heating and cooling processes that take place in the accretion
funnel.

Another important point that the standard models do not deal with, is
that the accretion process is very variable. Steady state axisymmetric models
cannot obviously explain the observed variability.

SU Aur is a typical example of CTTS that shows variable emission lines
[27, 46]. It also shows periodic infall and outflow signatures that are 180
degrees out of phase, indicating that the wind is strongest when the infall is
weakest. This can be explained by a magnetospheric accretion model with an
inclined dipole field with respect to the rotation axis (non-axisymmetric) in
which accretion and outflow are naturally favored in opposite phases.

TW Hya is a pole-on CTTS that, despite of that, presents a daily variabil-
ity of its emission line profiles [1]. In that case, even an inclined dipole cannot
easily explain such variabilities and there is evidence therefore for non-steady
accretion towards the star, a feature that the standard magnetospheric accre-
tion models do not take into account.

Overall, the accretion/ejection processes appear to be dynamical on several
timescales. It is variable over hours for non-steady accretion, like seen in the
veiling variability of RU Lup during a single night [55]. In weeks, for rotational
modulation, like SU Aur discussed before, and like the veiling variability of AA
Tau [5]. These week-long variabilities are most likely due to an inclined dipole,
causing accretion to be periodically favored at certain phases. Accretion is
variable over months, for global instabilities of the magnetosphere. Due to
differential rotation between the star and the disk, numerical models have
shown that the magnetosphere is expected to expand, open and eventually
reconnect [19, 20, 38]. It was also shown that this expansion can be measured
observationally by the projected radial velocity of the redshifted absorption
component of Hα, which is formed in the funnel flow [5]. This was observed for
AA Tau, as the radial velocity of the redshifted component decreases in a few
rotational periods. At the lowest radial velocity level, accretion is inhibited
(inflated magnetosphere). The observed veiling then goes to zero and the flux
in the lines too. A few days later (maybe reconnection) everything is back
again. The accretion/ejection process is also observed to be variable in years
from outbursts like EXORs and FU Ori, a recent example being the McNeil
nebula [48].

5.1 Dynamical Models

The simplest extension to the standard magnetospheric accretion models, in
order to investigate the rotational profile variability, is to brake the axisym-
metry of the dipole, leaving, for example, curtains of accretion in azimuth,
but still keeping the magnetic and rotation axis aligned. Such models were
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proposed to explain the variability of the observations [54] and are predicted
by 3D MHD simulations [51]. Symington et al. (2005) [56] calculated such
models and saw that the line profiles overall agree with the observations but
they ended up with a variability much larger than usually observed in CTTSs.
They suggest that the magnetosphere has probably a high degree of axisym-
metry broken by higher density streams that produce the observed variability.

A more complicated but very interesting view of the star-disk interaction
has recently emerged from MHD simulations. Romanova et al. (2002) [50]
performed impressive MHD simulations of stellar magnetic field and disk
interactions in quiescent regime. They calculated 2D MHD simulations of
disk accretion to a rotating aligned dipole and showed that funnel flows, where
matter flows out of the disk plane and essentially free-falls along the stellar
magnetic field lines, are a robust feature of disk accretion to a dipole. In the
simulations, which run up to more than 60 Keplerian periods near the inner
disk truncation radius, the disk, represented by a “density structure”, trun-
cates and a funnel flow forms near the truncation radius, where the magnetic
pressure of the dipole is comparable to the kinetic plus thermal pressure of
the accreting material. Some outflow by centrifugal force is present in the
simulations and seen to be quasi periodic.

Romanova et al. (2003) [51] also did 3D ideal MHD simulations of the disk
accretion to a slowly rotating star with an inclined dipole magnetic field. In
these simulations, matter is shown to accrete to the inclined dipole forming
non-axisymmetric structures in the stellar magnetosphere. The simulations
show that the flow of matter has different shapes at different density levels.
The low density part of the flow covers almost the entire magnetosphere,
while the larger density regions of the flow accrete in streams. The streams
may obscure the light emitted from the stellar surface or from hotspots at
the surface of the star, thereby causing stellar variability. The inner regions
of the disk often become warped or tilted as the system evolves, as predicted
by Terquem & Papaloizou (2000) [57].

Another result of the numerical simulations is the presence of a dynami-
cal interaction between the disk and the stellar magnetosphere. Several sim-
ulations have shown that differential rotation along the field lines between
the star and the inner disk region leads to the lines expansion, opening and
reconnection [19, 20, 38, 52, 60]. When the magnetic field reconnects, strong
X-ray flares can be produced. After the reconnection the initial magneto-
spheric configuration is restored. The timescale for this to occur is of a few
rotation periods, determined by the diffusion of the magnetic flux through
the inner regions of the disk. That is apparently what was detected in the AA
Tau observing campaigns by Bouvier et al. (2003, 2005) [5, 6], but those are
the only datasets that allowed to investigate these results. There is therefore
the need for longer observing campaigns of CTTSs combining photometry,
spectroscopy and polarimetry to investigate the time variability of the mag-
netospheric accretion and the star-disk interaction in a timescale of weeks to
months.
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6 Conclusions

The general picture that is emerging nowadays of a CTTS is that of an
interacting star-disk system composed of a young magnetized star and its
circumstellar disk. The young star has a strong magnetic field that presents
a complex topology at the surface and interacts with the circumstellar disk
through dipole or multipole field lines, depending whether the disk trunca-
tion radius is close to the star (multipoles) or far enough from the star for
the dipole to dominate. Magnetospheric accretion, with the overall charac-
teristics predicted by magnetospheric accretion models, is a robust feature in
CTTSs, supported nowadays by several observational evidences such as the
presence of strong magnetic fields (∼2 kG), the presence of accretion shocks,
the observation of redshifted absorption from infalling material near free-fall
velocities and strong emission lines formed in accretion columns. Accretion
also seems to be the driving source of hot stellar winds and disk winds, since
such wind signatures are prominent in stars with high mass accretion rates.
Disk Winds, accretion-powered stellar winds and magnetospheric accretion
apparently coexist in CTTSs. Accretion and ejection are then strongly re-
lated processes and models that try to explain CTTSs should take both into
account.

The star-disk interaction is very dynamical on several timescales (from
hours to weeks, months and years) and is mediated by the stellar magnetic
field, as evidenced by synoptic studies of CTTSs and by the recent MHD
simulations of the star-disk interaction. There is nowadays the need for month-
long observational campaigns of CTTSs in order to better understand the
dynamics of the star-disk interaction and to test the predictions of the MHD
simulations.
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Abstract. Magneto-Hydrodynamics (hereafter MHD)describes plasmas on large
scales and more generally electrically conducting fluids. This description does not
discriminate between the various fluids that constitute the medium. In laboratory, it
allows to globally describe a plasma machine, for instance a toroidal nuclear fusion
reactor like a Tokamak. In astrophysics it plays an essential role in the description of
cosmic objects and their environments, as well as the media, such as the interstellar
or the intergalactic medium. A set of phenomena are specific to MHD description.
Some of them will be presented in this lecture such as the tension effect, confinement,
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1 What is MHD?

Magneto-HydroDynamics (MHD) describes the dynamics of an electrically
conducting continuous medium where the Lorentz force significantly acts un-
der the following conditions:

• the electric neutrality is realized locally
• the dynamics is that of a single fluid
• Ohm’s law applies.

This is never truly realized in a plasma, but these conditions are easily
realized with a good approximation in a collisional plasma at scales much
larger than the mean free path. These conditions are not obviously realized
in hot plasmas and it is useful to look for criteria based on the main reference
parameters: such that the typical intensity of the field B0, the scale of its
variations �0 and the plasma mass density ρ0. One then defines the typical
current density (the international system of units will be used):

J0 =
B0

μ0�0
(1)

and the typical Lorentz force density:

B2
0

μ0�0
. (2)

The Alfvén time τA and the Alfvén velocity VA characterize the dynamics.
Indeed a fluid element is accelerated by the Lorentz force such that

ρ0
�0
τ2
A

∼ B2
0

μ0�0
,

thus one defines

VA ≡ �0
τA

≡ B0√
μ0ρ0

. (3)

Non-relativistic MHD holds as long as the Alfvén velocity is much smaller
than the velocity of light and thus the “displacement current” can be neglected
in Ampère-Maxwell equation (magnetostatic approximation).

It is well known in plasma physics that local neutrality is approximately
satisfied when the motions are slow compared to the electron thermal speed
and developed on large scales compared to Debye length. Indeed under those
conditions the electron fluid is in a quasi Boltzmann equilibrium and screens
the ion charge, so that the deviation to local neutrality is on the order of
λ2
D/�

2
0, where λD is the Debye length. However we will discuss this point in

more details later on.
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The MHD description (see text books by Parker [7], Priest [9], Goedbloed &
Poedts [3]) is designed in order to be adequate for the description of the
global motions of a medium at speeds much slower than the speeds of the
particles belonging to the populations lighter than the most inert component;
in other words the motions are comparable to the motions of the heaviest
population (ions or, in a weakly ionized medium, neutral if they are coupled
by collisions), the lighter populations (electrons and lighter ions), that have
higher microscopic motions, globally follows in quasi equilibrium, their inertial
force being statistically negligible. In collisional medium, it is sufficient that
the Alfvén time be longer than the longest collisional time for fulfilling the
single motions criteria. This amounts to assume that the scale �0 is larger than
the larger mean free path. At these scales, all the species have a strong colli-
sional coupling and move as a single fluid. In a weakly collisional plasma the
slower microscopic time is the cyclotron period of the heaviest particles. The
MHD description then requires that these individual motions be smoothed out
which requires that ωciτA 	 1 or equivalently �0 � r0 ≡ VA

ωci
. This length r0

is a kind of ion Larmor radius and the condition for MHD validity can be seen
as the condition for the ions to be “magnetized” at the considered scale. This
can also be expressed as the inertial length of the ions since r0 = δi = c/ωpi
(ωpi being the ion plasma pulsation); at a scale smaller than δi the ion fluid
tends to frozen. MHD is therefore the approximation of leading order with
respect to the small parameter r0/�0.

The consistence of MHD approximation is questionable since the existence
of an electric current implies that electrons and ions are moving at different
speeds. The required velocity difference can be estimated, assuming electro-
neutrality:

|ue − ui|
VA

∼ J0

neqe
VA ∼ B0

√
μ0nimi

μ0�0neqeB0
∼ c

ωpi�0
∼ r0

�0
. (4)

As will be seen several times, this size r0 defines the scale beyond which MHD
description is valid.

2 Dynamical Equations

2.1 Local Conservation Laws of Matter and Electric Charge

As long as no chemical nor nuclear reaction is considered, each fluids preserves
its mass in the flow, which is locally expressed by the continuity equation:

∂

∂t
na + div naua = 0 . (5)

The single fluid description requires that the total mass density ρ ≡∑
a nama and the global fluid velocity u be linked by the law of matter con-

servation, which is exactly insured by defining this global fluid velocity as the
motion of the center of mass of the fluid element
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u ≡
∑

a namaua∑
a nama

; (6)

thus the mass transport equation reads:

∂

∂t
ρ+ div ρu = 0 . (7)

In the particular case of a fully ionized plasma constituted by only one ion
population (H+ for instance), the definition of the barycentric velocity and the
definition of the current density, J ≡∑a naqaua, constitutes a system of two
linear equations that can be easily inverted and the result can be expanded
in powers of the small mass ratio me/mi. The following result is obviously
obtained:

ui = u(1 + O(me/mi)) and (8)
ue = (u + J/neqe)(1 + O(me/mi)) . (9)

The condition for a weak velocity difference previously given insures that the
difference of ue with u is relatively weak.

Momentum Transport

The equation of motions for each fluids reads:

∂

∂t
namaua,i + ∇j(ρua,iua,j + Pa,ij) =

naqa(Ei + εijkua,jBk) + namagi +
∑
b

Πab,i , (10)

where Πab is the momentum lost by the particle of type “a” through elastic
collisions with particles of type “b”; and one has

∑
abΠab = 0. The previous

statement allows to assess that the ions dominate the inertial force (when
neutrals are negligible or uncoupled) in the framework of MHD description,
the electrons follow in quasi equilibrium with a negligible contribution to the
inertia and insures local neutrality of the plasma along the flow governed by
the Lorentz force. Thus assuming the same velocity for both species and sum-
ming the momentum equations of the species, one obtains the MHD equation
of motions:

∂

∂t
ρui + ∇j(ρuiui + Pij) = fi + ρgi , (11)

where f = J × B is the Lorentz force density, that can be expressed under
different forms as will be seen later on. There is no contribution of the electric
field because of the local neutrality. The pressure tensor is the sum of all
the partial pressure contributions. Its non-diagonal part contents the viscous
effect and the tensor is usually decomposed into a scalar part and viscous
stress tensor, as follows:
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Pij = Pδij − τij with τij = ηVij + ζδijdivu , (12)

the traceless tensor Vij being the shear tensor : Vij ≡ ∇iuj+∇jui− 2
3δijdivu.

When the medium is weakly ionized, the neutral component is associated
to the dynamics and dominates the inertia when the mean free path of the
ions in the neutral gas is much shorter than the typical length �0.

Energy Transport

For a full description an energy transport equation is needed. The summation
of the equations of energy transport of each species leads to the equation that
governs the transport of the total kinetic energy density Wkin = 1

2ρu
2 +Wth,

where Wth is the internal energy density:

∂

∂t
Wkin + div(u(

1
2
ρu2 +Wth + P ) + q − u · τ ) = J · E + ρu · g . (13)

In collisional plasmas, the heat flux q is proportional to the temperature gra-
dient; this is not the case in collisionless plasmas where Landau effects and
microturbulence play a major role. Besides, the transport of the electromag-
netic energy of density Wem, that involves the Poynting flux S, is such that:

∂

∂t
Wem + div S = −J · E . (14)

In some cases, an equation of state (i.e. P (ρ)) is enough for a fair description.

3 Ohm’s Law

In a hot plasma, the validation of Ohm’s law is the most tricky task. This law
is directly derived from the equation of motion of the electrons after having
neglected the inertial force, which is justified when the dynamical time scale is
longer than the characteristic time of the electron dynamics (ω−1

pe , the inverse
of the electron plasma pulsation); it is generally sufficient that the length scale
of the phenomenon is much larger than the inertial length of the electrons
δe ≡ c/ωpe. Indeed this quasi stationary state is such that

∇Pe = neqe(E + ue × B) − nemeν̄ei(ue − ui) ; (15)

which allows to write an equation relatively close to the Ohm’s law by assum-
ing local neutrality and by introducing the resistivity η ≡ meν̄ei

neq2e
:

E + ue × B = ηJ +
∇Pe
neqe

. (16)
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However the equation is a little more complicate if one inserts the fluid velocity
instead of the electron fluid velocity. This makes to appear a supplementary
contribution, abusively called “Hall effect”, J × B/neqe:

E + u × B = ηJ +
∇Pe
neqe

+
J × B

niqi
. (17)

This equation called “generalized Ohm’s law” differs from the standard Ohm’s
law:

E + u × B = ηJ . (18)

It differs by two extra terms whose importance can be estimated by comparing
them to the electro-motive field that is of order VAB0. In fact the importance
of the “Hall term” has already been measured by the importance of the relative
velocity between electrons and ions, which leads to

|J × B/niqi|
VAB0

∼ r0
�0

. (19)

The pressure term marks the bi-fluids character of the plasma and

|∇Pe/neqe|
VAB0

∼ δn

n

Te
qeB0VA�0

∼ β
δn

n

r0
�0

. (20)

The parameter β is defined as the ratio of the kinetic pressure over the mag-
netic pressure; it plays an important role in MHD as will be seen later on.

3.1 Back to Neutrality Assumption

The approximation of local neutrality in MHD regime can be examined more
carefully. In that purpose, the relative deviation ρel/neqe can be examined
from Ohm’s law by calculating the divergence of the electric field, neglecting
the two extra terms of order r0/�0 mentioned previously.

ρel
neqe

=
ε0
neqe

(div(ηJ) − div(u × B)) . (21)

The term involving the current describes the relaxation of the electric charge,
since divJ = −∂ρel

∂t . Only the term in div(u × B) could be at the origin
of a charge separation. However, when the divergence does not vanish, its
contribution is at most of the order given by

ρel
neqe

∼ ε0
neqe

u0B0

�0
∼ u0VA

c2
r0
�0

. (22)

It is worth noticing that significant deviations can rise in relativistic regime;
this is the case of the Pulsar magnetosphere, which has a very fast rota-
tion with an extremely intense magnetic field and generates the so-called
Goldreich-Julian charge.
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As previously stressed, the validation of MHD description for a mixture
of electrons and ions essentially reduces to the condition that the scale �0 be
much larger than the typical ion Larmor radius r0 that practically coincides
with the inertial length of the ions δi. When the neutral population is cou-
pled to the plasma through ion-neutral collisions because �0 is larger than the
mean free path, the so-called ambipolar diffusion takes place.

3.2 Ambipolar Diffusion

In some important astrophysical applications, the neutral fluid is the dominant
component of the inertia and is coupled to the dynamics. This is the case in
the interstellar medium apart from the HII regions, in envelopes of young
or giant stars. The MHD description is under collisional conditions and a
global description involving the neutral component is valid at scales larger
than the mean free path of the ions in the neutral fluid. The ion fluid being
more tenuous than the neutral fluid, the ion inertia is negligible, the Alfvén
velocity is a function of the neutral mass density and Ohm’s law is properly
modified.

The plasma having a negligible inertia is thus simply described by an
dynamical equilibrium condition:

∇(Pe + Pi) = J × B − nimiν̄in(ui − un) (23)

Ohm’s law is modified as follows:

E + u × B = ηJ +
B × (J × B)
nimiν̄in

, (24)

the second term in the left hand side is like an anisotropic resistivity term
acting only on the perpendicular current: ηamb⊥ = μ0

V 2
A

ν̄ni
. The Alfvén velocity

essentially depends on the neutral mass density as long as they are coupled
to the ions at the considered scale (i.e. �0 � �̄in).

4 Ideal MHD

The magnetic Reynolds number Rm is introduced in order to measure the
relative importance of the resistive dissipation effect in Ohm’s law. Indeed
comparing u × B with ηJ , the ratio of the corresponding fiducial quantities
defines the magnetic Reynolds number:

Rm ≡ u0�0
η/μ0

. (25)

When this number is large, the resistive dissipation term can be neglected
at first approximation. Moreover if the usual viscous Reynolds number is large
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also, then dynamics can described without any dissipation effect; this is what
one calls “ideal MHD”. In general, there always exist some regions of the
physical space where that approximation is not valid.

In ideal MHD, the electric field, orthogonal to u and B, has just a com-
pensation role with respect to the motion of the fluid in a transverse direction
to the magnetic field; this is equivalent to state that the transverse motion is
a general drift of all the components of the fluid at the velocity E × B/B2.

In standard MHD, a parallel component of the electric field can rise only
if the resistivity is not neglected. However in a more general ideal MHD, i.e.
when one takes into account the contribution of the electronic pressure in the
generalized Ohm’s law, a component E‖ can develop in order to compensate
an electronic pressure gradient along the field lines; which is an effect of order
r0/�0, as previously seen. This refinement is useful when kinetic corrections,
such as Landau effects, are relevant. These are small scale corrections, but
often the correct mechanisms for exciting or damping MHD waves.

4.1 Magnetic Diffusion versus “Frozen in Condition”

When the magnetic Reynolds number is weak, resistivity is an important effect
and the magnetic field lines diffuse across the plasma. Indeed, eliminating the
electric field between the Maxwell-Faraday law (∂B

∂t + rotE = 0) and Ohm’s
law, one gets the following evolution equation (called induction equation):

∂B

∂t
= rot(u × B) − rot(νmrotB) . (26)

When Rm is weak enough and the resistivity is uniform, the equation reduces
to a diffusion equation:

∂B

∂t
= νmΔB . (27)

Thus the field tends to become homogeneous in the plasma, because of the
dissipation of the electric current, and νm = η/μ0 corresponds to a diffusion
coefficient, called magnetic diffusivity.

In ideal MHD, the evolution of the magnetic field is intimately linked
with the motions of matter since the field is “frozen” in the plasma flow. The
“frozen in” phenomenon stems from two important theorems established by
Alfvén.

Theorem 1. In ideal MHD, the magnetic field lines and more precisely the
field B/ρ are transported by the flow, namely: the transformation generated
by the flow maps the field B/ρ and its lines at time t0 with the field B/ρ and
its lines at time t.
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What is the meaning of the statement “a vector field is transported by the
flow”?

The flow generates a mapping φt′t of the physical space onto itself which
links any point M (x) at every time t with a point M′ (x′) at time t′: x′ =
φt′t(x). That differentiable mapping is obtained by integrating the differential
system ẏi = ui(y, τ) with the condition y(t) = x; which gives the Lagrangian
trajectories. Consider a vector field V (x, t). In one hand, on M′ at time t′,
one a priori finds V (x′, t′), as a definition of a vector field. In other hand,
on can also built on M′ at time t′, a vector V ′(x′, t′) obtained by the flow
transportation through the following procedure. On every point M at t, V
generates a direction along which one can define an infinitesimal displacement
dl = εV . The mapping of this small displacement by the flow on M′ at t′ is
a small displacement dl′ such that

dl′i = aij(t
′, t)dlj with aij(t

′, t) =
∂x′i

∂xj
. (28)

For t′ = t+ δt, this jacobian matrix can be expanded at first order as

aij = δij + δt
∂ui

∂xj
+ O(δt2) . (29)

That transformation φ∗
t′,t allows to built the field transported by the flow by

defining V ′ = εdl′ and V ′i = a(t′, t)ijV
j .

If V and V ′ coincides on every point at every time, one says that the
vector field is transported by the flow. In a general way one can evaluate
the deviation between these two field by the means of a special derivation
operation:

lim
δt→0

V (φt′,t(x), t′) − φ∗
t′tV (x, t)

δt
=
∂V

∂t
+ Lu · V , (30)

where the second term is, by definition, the Lie derivative of the vector field
V with respect to the flow field u:

Lu · V ≡ lim
δt→0

V (φt′,t(x), t) − φ∗
t′,tV (x, t)

δt
(31)

Knowing the expansion of φ∗
t′,t at first order and

V i(φt′,t(x), t) = V i(x, t) + δt uj
∂V i

∂xj
+ O(δt2) , (32)

one obtains the expression of the Lie derivative of a vector field:

Lu · V |i= uj
∂V i

∂xj
− ∂ui

∂xj
V j (33)
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That derivation of a vector field is also written as [u,V ]; the Lie bracket is
bilinear, anticommutative, satisfies the Leibnitz rule and Jacobi identity; this
operation is quite rich in algebraic properties and helpful for MHD calculation.
A field transported by a flow is thus characterized by the following equation:

∂V

∂t
+ [u,V ] = 0 . (34)

In ideal MHD B/ρ is a vector field transported by the flow and, conse-
quently, the field lines are invariant through the transformations generated
by the flow. Indeed the induction equation together with ρ div u = −Dρ/Dt
leads to the following equation, after having developed rot(u × B):

∂

∂t
B + u · ∇B − Dρ

ρDt
B = B · ∇u . (35)

Finally one gets:

D

Dt

B

ρ
=

B

ρ
· ∇u ⇔ ∂

∂t

B

ρ
+ [u,

B

ρ
] = 0 . (36)

Any kind of magnetic surfaces can be generated at will. Such a construc-
tion has some relevance only if some symmetry suggests the construction. For
instance, in an axially symmetric flow, one naturally defines magnetic surfaces
preserved by rotations around the axis, each surface is labeled by a definite
value of the magnetic flux across an horizontal disk of radius r and centered
on the axis at the point of coordinate z. In ideal MHD, the topological genus
of the magnetic surfaces is preserved by the flow. For example, if at a time
t0the surfaces are isomorphic to a sphere, or a torus, or a torus with several
holes, they remain so at any further time. However in Nature or in labora-
tory experiments, topological changes are observed: the magnetic surfaces can
be teared and switch from some topology to another one. The tearing sites
involve a dynamics which is not governed by ideal MHD; they are sites of “re-
connections” of field lines. The reconnection phenomenon is often triggered
by a “tearing” instability.

Theorem 2. In ideal MHD, the magnetic flux across a surface delimited
by a closed contour is constant when the contour is deformed by the flow
transformation.

Indeed, during a duration δt the contour γ is transformed into γ′ (see Fig. 1);
every point of γ is mapped to a point of γ′ obtained by φt′,t, x′i = xi+uiδt+
O(δt2).

Φ′ =
∮
γ′

A′ · dl′ . (37)

The infinitesimal variation Φ′ − Φ is equal to the difference between the
variation δΦ1 due to the modification of the field and the outflux δΦ2 across
the band generated by the displacement:
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x’

x

t’t

B

Fig. 1. The oriented contour γt at time t is transformed into a contour γ′
t at time

t’ by the flow. These contours are the boundary of an oriented surface and the flux
of the magnetic field across the surface is preserved

δΦ1 = δt

∮
γ

∂A

∂t
· dl , (38)

δΦ2 =
∮
γ

B · (dl × uδt) = δt

∮
γ

(u × B) · dl . (39)

Now the variation δΦ1 can be rewritten by inserting the ideal Ohm’s law:

δΦ1 = −δt
∮
γ

E · dl = δt

∮
γ

(u × B) · dl . (40)

The difference δΦ1 − δΦ2 = 0 and thus Φ′ = Φ.

5 Confinement and Transverse Diffusion of Matter

5.1 Pressure and Magnetic Tension

The Lorentz force density f ≡ J × B can be rewritten in another form,
illuminating for some theoretical developments. Indeed,

f =
1
μ0

rotB × B = −∇ B2

2μ0
+

1
μ0

B · ∇B . (41)

That force density, which is orthogonal to the field, is thus split into a mag-
netic pressure contribution that completes the kinetic pressure and a tension
contribution. The fact that the second term describes a tension effect can be
seen as follows. The term B · ∇B can also be split into a component that
pulls along the line towards the increasing intensity, ∂

∂sB
2/2, but is exactly
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canceled by the parallel component of the pressure gradient, and a transverse
component that pushes towards the direction of the curvature center and
tends to make the field line straight, B2 ∂eb

∂s = −B2n/R, s is the curviligne
coordinate along the considered field line, eb is the unit vector tangent to the
field line, n is the unit normal vector and R the curvature radius such that
∂eb

∂s = − n
R . Thus finally the action is two fold: a transverse pressure gradient

and a tension towards the center of curvature.
The picture of piano rods is illuminating to understand ideal MHD. Indeed,

when the frozen in effect and the tension effect are combined, the field lines
behave as piano rods, having some rigidity and reacting to curvature with a
restoring force.

Knowing that div B = 0, the Lorentz force density can also be written
under the form of divergence of a magnetic stress tensor:

fi = − 1
μ0

∇j(δij
1
2
B2 −BiBj) . (42)

The scalar pressure P ∗ is thus the sum of the kinetic and the magnetic pres-
sures, and the stress tensor τ∗ij is composed of the sum of the kinetic stress
and the magnetic stress BiBj/μ0.

An MHD equilibrium is described by

∇P = J × B + ρg

An important parameter is introduced in plasma MHD: β ≡ P
Pm

where
Pm ≡ B2/2μ0, the magnetic pressure. When it is very small in an equilib-
rium without gravity, a “force free” approximation can be assumed, namely
J × B = 0, and thus J = λB. Such equilibrium is conceived as a balance
between the magnetic pressure and the tension effect. An equilibrium without
any current can also encountered, it is called a “current free” equilibrium;
such configuration could be favored in jets.

Complement: Some More About the Energy Transport

The Poynting vector field S = E×B
μ0

can be rewritten in MHD by inserting
E = −u × B + E∗ where E∗ represents any difference to ideal MHD. Then

Si = − 1
μ0

(B2δij −BiBj)uj + S∗
i ,

with S∗ = E∗ × B/μ0. The equation of transport of the total energy, kinetic
+ magnetic, reveals two modified scalar quantities,

W ∗ = Wth +Wm and P ∗ = P + Pm
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and a modified stress tensor

τ∗ij = τij +
1
μ0
BiBj .

It is worth noticing that when E∗ = ηJ , then div(E∗ ×B/μ0) = −ηJ2 + B ·
rot(νmJ); this second term must not be forgotten in this formulation.

Confinement of a Plasma Column or a Cylindrical Jet

Consider the radial equilibrium of a plasma column along z-axis:

∂P

∂r
= JφBz − JzBφ

with Jφ = − 1
μ0

∂Bz

∂r and Jz = 1
μ0r

∂rBφ

∂r ; which leads to

∂

∂r
(P +

B2
z

2μ0
) = − 1

2μ0r2
∂

∂r
(rBφ)2 (43)

Ampère theorem relates rBφ with the current intensity across the horizontal
disk of radius r centered on the axis at z: rBφ = μ0I(r). Thus one finds that

I2(r) = −8π
μ0

∫ r

0

r′2
∂P̃

∂r′
dr′ =

16π
μ0

∫ r

0

r′P̃ (r′)dr′ − 8π
μ0

r2P̃ , (44)

where P̃ ≡ P + B2
z/2μ0. As r → ∞, one expects that r2P̃ → 0 and that the

integral
∫∞
0 r′P̃ (r′)dr′ converges, in order to get a realization of the plasma

confinement by the magnetic tension. When it converges, this latter integral
allows to define a characteristic radius a of the column, by stating that it
equals to a2P̃ (0). The total electric current thus converges and

I(∞) = (
16π
μ0

a2P̃ )1/2 ; (45)

conversely, given a total current, one derives the radius of the plasma column:

a =
I(∞)

(16π/μ0 P̃ (0))1/2
. (46)

Normal Diffusion of Matter

The plasma column, as considered above, seems to be perfectly confined; this
is the case in ideal MHD; but a small resistivity is sufficient to allow the
matter to diffuse across the magnetic surfaces. Indeed Ohm’s law applied
for this configuration leads to the following relations: Er + uφBz − uzBφ = 0,
−urBz = ηJφ and urBφ = ηJz . Thus there are three possible motions, namely,
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rotation motion associated to a difference of potential between the magnetic
surfaces, together with an arbitrary flow along the axis and a radial diffusion
motion allowed by the resistivity effect:

ur = −ηJφBz − JzBφ
B2
φ +B2

z

= − η

B2

∂P

∂r
. (47)

Inserting the radial motion in the continuity equation (this is the same for
both species of particles), one finds the diffusion equation of matter:

∂

∂t
n =

1
r

∂

∂r
(rD⊥

∂

∂r
n) , (48)

where the normal diffusion coefficient, of collisional nature, is thus:

D⊥ = η
P

B2
=
β

2
νm . (49)

These results holds for both a static column and a cylindrical jet.
The typical confinement time is then deduced from the diffusion coefficient:

τ =
a2

2D⊥
.

This time is an important quantity for nuclear fusion experiment in magnetic
reactors like Tokomaks. Indeed, when the temperature of a Deuterium-Tritium
plasma has reached a value around 100 keV, by an additional heating pro-
cess (additional because Joule heating has an efficiency that decreases with
temperature), the nuclear fusion reactions starts:

D + T → He4 + n ;

The neutron carries an energy of 14, 1MeV and the alpha particle 3, 5MeV .
The thermonuclear reaction generates a power density Q = nDnT ε0 < σv∗ >,
where ε0 is the energy carried by the alpha particle (the neutron energy is lost
by the plasma). For a given value of nD+nT , the product is maximum for nD =
nT = n. Some amount of heat is lost by particle diffusion across the magnetic
surfaces at a rate depending on the confinement time τ : Qloss = −3nT/τ .
The Lawson criteria gives the condition for this lost to be compensated by
the production of nuclear energy. For T = 100 keV , one finds

nτ > 1014cm−3.s . (50)

This criteria is more severe when one takes into account the various energy
conversion yields and the radiative lost. The tendency is to built bigger and
bigger machines in order to increase the confinement time.

6 MHD Waves in Homogeneous Plasma

In this section, the calculation of the MHD modes is presented in the sim-
plest case where the mean field is homogeneous B0 = B0ez, the unperturbed
plasma is homogeneous: ρ = ρ0 = constant and without boundary.
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6.1 The Alfvén Wave

The competition between inertia and tension gives rise to an incompressible
transverse wave, called Alfvén wave. The tension effect that is described by
the force density field fT = 1

μ0
B ·∇B can be linearized for small perturbation

and reads

fT =
1
μ0
B0

∂

∂z
δB ,

which is divergence free. Since an incompressible perturbation is considered,
δρ = 0 and div u = 0. The total pressure perturbation vanishes. This stems
from the fact that its laplacian necessarily vanishes in an incompressible flow,
since the inertial density force is divergence free as well; moreover, the plasma
is supposed homogeneous and unlimited, therefore not only the Laplacian but
also the total pressure fluctuation vanishes. Since δP ∗ = C2

s δρ + B0δB‖/μ0,
and δρ = 0, also δB‖ = 0.

The linearized equation of motions is thus:

ρ0
∂

∂t
u = fT =

1
μ0
B0

∂

∂z
δB (51)

and the induction equation together with the incompressibility condition reads

∂

∂t
δB + [u,B] = 0 (52)

whose linearization in a uniform mean field reduces to

∂

∂t
δB −B0

∂

∂z
u = 0 . (53)

Rederiving the equation according to time and inserting the first one, one
obtains the equation of propagation of the Alfvén waves:

∂2

∂t2
δB − V 2

A

∂2

∂z2
δB = 0 . (54)

This is a typical transverse wave with {E, δB,B0} forming a direct orthog-
onal trihedron. The frequency is such that ω = k‖VA and the group velocity
points along the direction of the mean field and is nothing but the Alfvén
velocity.

6.2 The Magneto-sonic Waves

Because the total pressure depends on the mass density and on the parallel
component of the magnetic field perturbations, waves of sonic type can be
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excited involving a coupling between δρ and δB‖. A simple derivation of the
system of coupled equations for δρ et δB‖ can be obtained as follows.

First one linearizes the mass conservation equation:

∂

∂t

δρ

ρ0
+ div u = 0 (55)

Since the tension contribution is divergence free (div fT = 0), one eliminates
its contribution by taking the divergence of the two parts of the linearized
equation of motions:

∂

∂t
div u +

1
ρ0
ΔδP∗ = 0 . (56)

Which leads to
∂2

∂t2
δρ

ρ0
− C2

sΔ
δρ

ρ0
= V 2

AΔ
δB‖
B0

(57)

The parallel component of the induction equation reads:

∂

∂t

δB‖
B0

=
∂

∂z
uz − div u (58)

One expresses divu as a function of δρ/ρ0, as for uz, it is easily determined
by the projection of the motion equation along the mean field which is devoid
of any Lorentz force contribution:

∂

∂t
uz + C2

s

∂

∂z

δρ

ρ0
= 0 . (59)

Taking the time derivative of the evolution equation for δB‖, one finds thus

∂2

∂t2
δB‖
B0

= −(C2
s

∂2

∂z2

δρ

ρ0
− ∂2

∂t2
δρ

ρ0
) . (60)

Therefore the system of equations governing the propagation of the magneto-
sonic waves is obtained:

∂2

∂t2
δρ

ρ0
− C2

sΔ
δρ

ρ0
− V 2

AΔ
δB‖
B0

= 0 (61)

∂2

∂t2
δB‖
B0

− V 2
AΔ

δB‖
B0

− C2
sΔ⊥

δρ

ρ0
= 0 . (62)

The dispersion relation is deduced by stating that the following determinant
vanishes: ∣∣∣∣ω

2 − k2C2
s −k2V 2

A

−k2
⊥C

2
s ω2 − k2V 2

A

∣∣∣∣
which gives

ω4 − k2(C2
s + V 2

A)ω2 + k2
‖k

2C2
sV

2
A = 0 . (63)
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The dispersion equation has two couples of roots, each couple containing a
forward and a backward wave of opposite velocity. These correspond to the
slow and the fast magneto-sonic modes of phase velocity V = ω/k. The prop-
agation angle being θ, k‖ = k cos θ. For θ = 0, the slow mode has a velocity
equals to the sound velocity Vs = Cs and the fast mode has a velocity Vf that
coincides with the velocity of the Alfvén mode; indeed the fast and Alfvén
modes degenerate. For almost perpendicular propagation (i.e. cos2 θ 	 1),
the fast mode reaches its highest velocity:

Vf =
√
V 2
A + C2

s

and the slow mode velocity tends to vanish:

Vs � k‖Cs
VA√

V 2
A + C2

s

.

7 Main Applications and “Special Effects”

Some special effects are attributed to the magnetic field.

• The confinement effect is the simplest one and plays an important role not
only in laboratory plasma physics but also in astrophysics, in particular
for the collimation of jets.

• There are specific heating processes that are due to the magnetic field, like
the “magnetic pumping” effect.

• The “frozen in” effect, previously explained, is very important in astro-
physics and very often invoked in the phenomenology of objects formation
or in the dynamics of astrophysical media.

• Because the magnetic field generates some internal pressure, it participates
to the Archimede thrust. And because of the frozen in condition, magnetic
tubes, that are lighter than equivalent unmagnetized plasma volumes, are
pushed upwards. This is the magnetic buoyancy effect responsible for the
emergence of flux tubes from the photosphere into the solar corona.

• Because the magnetic field generates a specific stress, as previously seen, it
can efficiently produce angular momentum transfer. This is a particularly
important process for the accretion-ejection phenomenon.

• Dynamo action is one of the most famous MHD effect (see the excellent
introduction by Moffat [4]) that is still under intensive investigations in
MHD theory development, in numerical simulations and also in experi-
ments that are currently being built.

• MHD has specific waves, solitons, and shocks that are different in their
nature and properties from the corresponding hydrodynamical concepts.

• MHD has specific instabilities governed by Lorentz force that are not en-
countered in Hydrodynamics (see [2, 3]).



94 G. Pelletier

Besides technological applications, the main applications of MHD are
encountered either in laboratory plasma physics, such as nuclear fusion ex-
periments, or in close astrophysics, such as the physics of planetary magneto-
spheres, of the Sun and the solar wind, or in remote astrophysics, such as the
physics of magnetized stars, white dwarfs, neutron stars and pulsars, black
hole environments, jets, the physics of particle accelerating shocks etc.

8 Magnetic Reconnections

8.1 General Considerations

The magnetic reconnection phenomenon is a very important in Tokomak
physics, space physics and astrophysics. It is a dissipation process that occurs
at very small scale in a very small region, but that manifests as a powerful gen-
eration of heat and energetic particles together with some acceleration of the
plasma. The energy input in a reconnection zone is a flux of magnetic energy.
It takes place in regions where the direction of the field lines changes suddenly,
i.e. over a short scale, as for instance in the magneto-tail of the Earth where
the field lines are in opposite directions as one crosses the “neutral sheet”.

It is useful to first consider a reconnection site with a geometrical view-
point. The reconnection site is surrounded by a plasma described by ideal
MHD with a good approximation. At least locally, one can generally define
magnetic surfaces quite naturally thanks to some symmetry. As previously
seen, the magnetic surfaces keep their topological genus in ideal MHD because
of the “frozen in” condition; in particular, they cannot be teared. When the
orientation of the field lines changes on a short scale, the ideal MHD condition
is violated. A localized strong current generates a strong Lorentz force den-
sity between these magnetic surfaces that attracts them towards each other.
The magnetic surfaces touch each other and change their topology: “conju-
gate surfaces” have a hole and weld each other, then allowing field lines to
lay on one side of the new welded surface to go through the hole and to lay
on the other side of the welded surface with an almost opposite direction
(see Fig. 1).

Actually the physics of the 3D reconnection suggested by the geometrical
picture is not yet mastered. It has been intensively studied in the 2D approx-
imation where the dependence according to the coordinate along the current
sheet is disregarded.

The reconnection sites need to be generated by dynamical effects like those
developed by the “tearing” instability which, as its name suggests, leads to
tear the magnetic surfaces by violating ideal MHD. This instability will not
be presented in this short introduction. However it is often possible to treat
a reconnection site in a stationary state even-though the process looks very
eruptive like in solar bursts. This is because the life time of the reconnection
site is very long compared to the Alfvén time. At the innermost region of a
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reconnection site, the electric current is concentrated on a sheet of thickness
δ much smaller than any other scales such as the sheet width L and the
sheet length Lz. In the vicinity of the current sheet the ideal approximation
is violated and, for many years, reconnection has been described in the frame
work of resistive MHD. The first historical works of that kind [6, 11] introduced
the famous Sweet & Parker mechanism; an extension of the model involving
slow shocks has been proposed by Petschek [8], which had a great success
in the astrophysical community. A more recent approach involving a more
refined description than MHD leads to successful results and turns out to be
a promising solution of the long standing issue of reconnection (see a recent
book devoted to this issue by Biskamp [1]). In this new approach there is
a transition zone between ideal MHD and the dissipation sheet governed by
“whistler” dynamics that controls the mass and energy fluxes. Therefore the
violation of ideal MHD is not due to resistive effects but to kinetic effects.

In this lecture I will briefly present the celebrated Sweet-Parker model and
then the whistler model; I have not enough time for presenting the Petchek
model (see [9]). These models are all stationary, two-dimensional and display
an odd mirror symmetry with respect to the plane {y = 0} (see Fig. 2).
Because the magnetic field reverses its orientation over a small scale δ a strong
current along the z-direction is concentrated on a sheet of thickness δ, the
width L along the x-axis is larger and depends on the details of the model.

8.2 The Sweet-Parker Model

The concentration of the current comes from Ampère law:

J =
1
μ0

rotB =⇒ J = Jez(1 + O(
δ

L
)) andJ ∼ Bi

μ0δ
(64)

The electric field, E = Eez, is derived from Ohm’s law: outside the current
sheet (ideal MHD) E − uyBx = 0, and thus

δ uout
Sout

B

uin
Sin

Fig. 2. 2D-reconnection governed by resistive MHD. The size of the current sheet
δ is such that the magnetic Reynolds number equals unity. Roughly half of the
magnetic energy influx is converted into heat flux, the other half converted into
kinetic energy flux, with an outflow at the Alfvén speed
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E = uiBi (65)

Inside the current sheet around the stagnation point,

E = ηJ ∼ νm
Bi
δ

. (66)

Therefore
ui =

E

Bi
∼ νm

δ
=⇒ Ri ∼ 1 . (67)

Inside the current sheet of thickness δ, the magnetic Reynolds number is weak;
which means that magnetic diffusion is taking place efficiently and smoothes
out the magnetic field irregularities and thus allows reconnections of twisted
field lines.

Matter Flux

Despite a smooth density variation, the conservation of mass flux implies

uout ∼ L

δ
ui (68)

Conservation of the Magnetic Flux Outside the Sheet

[u,
B

ρ
] = 0 (69)

and ∂
∂y ∼ 1

δ implies

uy
∂

∂y

Bx
ρ

− By
ρ

∂

∂y
ux = 0 , (70)

and a smooth variation of ρ leads to

Bout ∼ δ

L
Bi (71)

Motions of the Outflow

The Lorentz force density pushes the flow in the direction of the curvature
center

fx = −JzBy, > 0 forx > 0 and < 0 forx < 0 . (72)

Thus

fout ∼ JBout ∼ BiBout
μ0δ

∼ B2
i

μ0ρ
(73)

ρ
u2
out

L
∼ fout =⇒ u2

out ∼
B2
i

μ0ρ
(74)

uout ∼ VAi (75)
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Energy Budget

The sheet is heated by Joules effect:

PJ/Lz ∼ ηJ2Lδ ∼ η
B2
i

μ2
0

L

δ
∼ ui

B2
i

μ0
L (76)

The power dissipated by Joule effect is a sizable fraction of the Poynting
influx.

The outflux of kinetic energy is estimated as follows:

Pout/Lz ∼ 1
2
ρu3

outδ ∼
1
2
ρV 2

Aiuoutδ ∼
1
2
B2
i

μ0
uiL . (77)

The outflux of kinetic energy is thus a sizable fraction of the Poynting influx
as well.

However part of the energy budget is not mastered in the 2D model because
particle acceleration takes place along the current sheet. Indeed, because of
the electric field that points along z-axis, run away electrons are accelerated
and reach an energy equal to the difference of potential along the line:

εmax = ZeELz ∼ ZeuiBiLz . (78)

Since the length of the line, Lz, is unknown, it is impossible to control how
much power goes into particle acceleration. Of course this power is also at
maximum a sizable fraction of the Poynting influx.

The Main Problem of the Model

The mass flux and the energy flux vanish when resistivity goes to zero.

uiL ∼ uoutδ ∼ δVAi (79)

and

δ ∼
(
Lνm
VAi

)1/2

. (80)

This is the main problem for astrophysical plasmas that have a very large
magnetic Reynolds number and for which a fast and efficient reconnection
process is expected.

8.3 Reconnection Mediated by Whistler Dynamics

The thickness δ of the current sheet, which is also the variation scale of the
magnetic field in the y-direction, is often smaller than the minimal scale δi
(or equivalenty r0 as seen at the first section) required for the validation of
the MHD description. Indeed
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δ

δi
=
√
me

mi

c

ui

νei
ωpe

, (81)

and is almost always much smaller than unity in astrophysical plasmas, in
space plasmas and in tokomak plasmas. Therefore a description finer than
MHD description is required. In order to properly improve the description, it
is important to stress the following points:

• The magnetic field is frozen in the electron flow as long as the dynamics
develop at a scale larger then the electron inertial scale defined by δe ≡
c/ωpe.

• The electrons have a negligible inertia at scales larger than δe.
• The ions are no longer magnetized when they move at scales smaller than

r0 ≡ VA/ωci.
• The ions are very inert at scale smaller than their inertial scale defined by

δi ≡ c/ωpi. Now it has been indicated that the inertial length of the ions
coincides with r0, the minimum MHD scale.

The non-collisional reconnection process is elaborated on the following
fundations (see Fig. 3). The reconnection sheet is concentrated over a thickness
of order δe. Between δe and δi, the magnetic field is frozen in the electron flow,
the motions are such that the electrons have a negligible inertia and the ions
are almost inert. That intermediate dynamics is typical of the “whistler” wave
that can be derived under the conditions me → 0 and mi → ∞. The dynamics
is not governed by mechanics anymore, this is pure electrodynamics with a
current carried by the electron fluid only:

J � −neeue . (82)

δi

δ
uout
Sout

B

uin
Sin

Fig. 3. 2D1/2-reconnection governed by whistler dynamics. Between the smallest
MHD scale δi and the size of the current sheet δ ∼ δe, there is an intermediate
region where whistler dynamics takes place and controls the influx and the outflux
of mass and energy
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At that approximation, the electric field E+ue×B = 0 is nothing but the Hall
electric field. The fluxes of matter and energy between the MHD domain and
the current sheet are thus governed by what is called the “whistler dynamics”.

Like in Sweet-Parker model, uiL ∼ uoutδ and uiBi ∼ uoutBout. But the
motions are those of the electrons and the speed of the outflow is a kind of
Alfvén velocity with the electron mass:

uout ∼ Bi√
μ0neme

≡ V eAi . (83)

This result is not derived from a balance between the inertial force and the
Lorentz force like Sweet-Parker model; it comes from a purely electrodynamic
calculation (see below).

The matter influx is very fast and the Poynting influx is carried by the
electrons is very intense, which leads to an efficient and fast reconnection
process. The products

uiL ∼ uoutδ ∼ V eAiδe ∼
Bi

μ0nee
, (84)

are independent of any mass and resistivity and lead to an universal budget
free from any kind of dissipation process taking place in the current sheet.
Numerical simulations [10] show that L ∼ 10δe. The Poynting flux entering
the reconnection site is much more intense than in the Sweet-Parker model,
because the field is transported by the fast electrons motions. The outflux of
kinetic energy is a sizable fraction of the Poynting influx:

Pout/Lz ∼ 1
2
nemeu

3
outδ ∼

1
2
neme(V eAi)

2uoutδ ∼ 1
2
B2
i

μ0
uiL . (85)

Whatever the kind of dissipation taking place in the current sheet, the power
dissipated seems to be always a sizable fraction of the Poynting influx as well.
Indeed extrapolating the value of the reconnection electric field (which is al-
most constant at first approximation) E = uiBi in the sheet, knowing that
there is a current Jz along the neutral sheet, one finds that the power transmit-
ted by the electric field in the sheet is such that PE/Lz = JzEδL ∼ uiB

2
i /μ0.

A sizable fraction of the Poynting flux is really found and it contributes to
heat thermal electrons and to accelerate suprathermal electrons in the sheet.

Calculation of the Outflow

The frozen in condition in the electron flow reads [ue,B/ρ] = 0 and, like in
Sweet-Parker, implies

uyBx ∼ Byux ,

and also
uyBz ∼ Byuz .
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An important difference with Sweet-Parker model is that all the fields neces-
sarily have three components. Maxwell-Amp‘ere equations provide three other
relations:

ux =
1

μ0n0e

∂Bz
∂y

(86)

uy =
1

μ0n0e

∂Bz
∂x

(87)

uz =
1

μ0n0e
(
∂Bx
∂y

− ∂By
∂x

) . (88)

From the ratio of the first and the third components and of the two relations
provided by the induction equation, one derives that

Bz
Bx

∼ uz
ux

∼ Bx
Bz

and thus uz ∼ ux et Bz ∼ Bx.
Therefore the following set of results is obtained:

uout ∼ 1
μ0n0e

Bi
δ

(89)

ui ∼ 1
μ0n0e

Bi
L

(90)

uz ∼ 1
μ0n0e

Bi
δ

(91)

and also Bout ∼ δ
LBi et Bz ∼ Bi. That important generation of motions and

field component along the neutral sheet marks a profound difference with the
Sweet-Parker model.

8.4 Perspective

These results have been checked by three types of numerical simulations:
particles in cell, hybrid, Hall MHD (see the excellent paper by Shay et al.
[10]). One of the main efforts in that field is the extension of the results to 3D
situations. The existence of a whistler range governing the fluxes is confirmed.
The differences with the 2D description is the development of instabilities
generated by the electron outflow, which excite plasma modes that are not
taken into account by MHD even by “Hall MHD”. Hall MHD is the simplest
extension of MHD that takes into account the Hall effect in the generalized
Ohm’s law. Although it does not describe the whole phenomenology of the
reconnection process, the use of the Hall MHD is sufficient to catch the main
aspect of the phenomenology of reconnection, namely the fluxes of matter and
energy, since, as previously seen, these results are independent of the details
of the dissipation process at very small scales. The Hall MHD contains other
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modes than MHD modes, in particular the whistler mode that has a frequency
proportional to the square of the wave number, (hence its name, because
high frequency waves arrive before low frequency waves when a whistler wave
packet is generated in the ionosphere, for instance). This is in fact a difficulty
for developing numerical codes (look at [5]), because the short scale numerical
errors propagate faster than the smoother ones ... Nevertheless it seems that
the long standing issue of magnetic reconnection will be mastered on the near
future. Which is a good news for theoretical astrophysics.

The non-linear development of the Magneto-Rotational Instability (MRI)
in accretion disks depends very much of a correct description of the reconnec-
tion process. Another important MHD process that depends also very much on
reconnections is the Dynamo action in stars, accretion disks, galaxies, galaxy
clusters etc. The progress in the theoretical and numerical investigations of
this processes depends on the progress in understanding reconnections.
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1 Introduction

It is an observational fact that at least part of the mass in protostellar disks
is accreted onto the central object. In a Keplerian accretion disk, the specific
angular momentum increases with radius. Therefore, a particle can be accreted
only if its angular momentum is removed or transferred to particles located
at larger radii. Whether angular momentum is removed from or redistributed
within the disk depends on whether the disk is subject to external or internal
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torques. Possible external torques can either be magnetic (when an outflow
is present) or tidal (in binary systems), whereas possible internal torques can
either be gravitational (massive disks) or turbulent. These mechanisms have
been discussed by Papaloizou & Lin (1995).

During the early stages of disk evolution, when the disk is still embedded
(class 0/I object) and has a significant mass compared to the central star, there
may exist strong disk winds and bipolar outflows (e.g. [23]) with associated
magnetic fields. During this stage, a hydromagnetic disk wind may be an
important means of angular momentum removal for the system [5]. Because of
the action of magnetic torques, material ejected from the disk is able to carry
away significantly more angular momentum than it originated with in the disk.
Therefore, even a modest ejection rate can lead to a significant accretion rate
through the disk. However, observations indicate that outflows may exist only
in the early stages of disk evolution, so that this mechanism cannot account
for angular momentum transport during the whole life of accretion disks. In
addition, it may affect only the inner parts.

When the mass of the disk is significant compared to that of the star,
gravitational instabilities may develop, leading to outward angular momen-
tum transport [14, 15, 20, 21] that results in additional mass growth of the
central star. This redistribution of mass may occur on the dynamical timescale
(a few orbits) of the outer part of the disk and thus may be quite rapid: on
the order of 105 yr for a disk radius of 500 AU. The parameter governing the
importance of disk self–gravity is the Toomre parameter, Q ∼ M∗H/(Mdr),
with M∗ being the central mass, Md being the disk mass contained within
radius r and H being the disk semi–thickness. Typically H/r ∼ 0.1 [25]
such that the condition for the importance of self–gravity, Q ∼ 1, gives
Md ∼ 0.1M∗. During the period of global gravitational instability, it is rea-
sonable to suppose that the disk mass is quickly redistributed and reduced by
accretion onto the central object such that the effects of self–gravity become
negligible.

If the disk surrounds a star which is in a pre–main sequence binary system,
tidal torques transport angular momentum outward, from the disk rotation to
the orbital motion of the binary. However, although tidal effects are important
for truncating protostellar disks and for determining their size, it is unlikely
that tidally–induced angular momentum transport plays a dominant role in
the evolution of protostellar disks (see Terquem 2001 and references therein).
In a non self–gravitating disk, the amount of transport provided by tidal
waves is probably too small to account for the lifetime of protostellar disks.
In addition, tidal effects tend to be localized in the disk outer regions.

When the disk mass is such that self–gravity can be ignored and the
jet activity has significantly decreased, turbulent torques may become the
most important way of redistributing angular momentum in the disk. Histori-
cally, the first angular momentum transport mechanism to be considered was
through the action of viscosity [30]. However, in order to result in evolution
on astronomically interesting timescales, it is necessary to suppose that an
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anomalously large viscosity is produced through the action of some sort of
turbulence.

In this paper we present the theory and models of turbulent accretion
disks. For more detail on disk theory, the reader is referred to the reviews by
Papaloizou & Lin (1995) and Balbus & Hawley (1998) and to the book by
Frank et al. (2002). Disk models are reviewed by Dullemond et al. (2006).

2 Turbulent Angular Momentum Transport in Disks

The molecular kinematic viscosity is given by:

ν ∼ csλ , (1)

where cs is the sound speed and λ is the mean free path of the particles. In a
typical protostellar disk, at the distance r = 1 astronomical unit (au) from the
central star, λ ∼ 1 m and cs ∼ 103 m s−1. The associated viscous timescale
tν ∼ r2/ν is therefore larger than the age of the Universe!

The realization that molecular transport of angular momentum is so ineffi-
cient led the theorists to look for another mechanism of transport in accretion
disks. Because Reynolds numbers are so high, it was thought that probably
accretion disks would be subject to the same hydrodynamical nonlinear in-
stabilities that shear flows experience in laboratory. The resulting turbulence
would then transport angular momentum efficiently. Although today much
doubt has been cast on hydrodynamical instabilities in disks, turbulence is
still a strong candidate for transport since it has been shown relatively re-
cently that a linear magnetohydrodynamical instability can develop in disks
(see below). Therefore, we turn now to turbulent transport, and contrast it
with molecular transport. Much of this section is based on Tennekes & Lumley
(1972), which the reader is referred to for more details (see also [3]).

We shall restrict ourselves here to the study of incompressible flows, as
this simplifies the discussion. For our argument, it is sufficient to take into
account only pressure and viscous forces, but in principle any other (external
or inertial) force could be added. The equations describing the fluid are the
Navier–Stokes equation of motion:

∂ṽi
∂t

+ ṽj
∂ṽi
∂xj

=
1
ρ

∂

∂xj
σ̃ij , (2)

and the equation of mass conservation:

∂ṽi
∂xi

= 0 , (3)

where the xi (i = 1, 2, 3) denote the coordinates and we adopt the standard
Einstein notation of summation over repeated indices. Here v is the fluid
velocity, ρ is the density of mass and [σ] is the viscous stress tensor. The tilde
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symbol above a variable means that we consider the instantaneous value of
the variable at the location xi and time t. We have:

σ̃ij = −p̃δij + ηs̃ij , (4)

where s̃ij in an incompressible fluid is given by:

s̃ij =
∂ṽi
∂xj

+
∂ṽj
∂xi

. (5)

Here p̃ is the pressure and η = ρν is the shear viscosity that we will take
constant.

We now use the so–called Reynolds decomposition, in which an instanta-
neous value is written as the sum of a mean value (denoted by a capital letter)
plus a fluctuation (denoted by a small letter):

ṽi = Vi + vi . (6)

This fluctuation is characteristic of the turbulence. This decomposition is
meaningful only if the timescale on which the fluctuations vary and the
evolution timescale of the flow are well separated. The mean values are
then taken over a timescale large compared to the turbulence timescale but
short compared to that of the flow evolution. As here we are not interested
in the long term evolution of the flow, we neglect the derivative with re-
spect to time of the mean values (i.e. we consider a quasi–steady state).
To simplify the discussion, we suppose that the average of vi over time is
zero: < vi >= 0.

Equation (3) averaged over time then leads to ∂Vi/∂xi = 0, i.e. the mean
flow is incompressible. Equation (3) thus implies ∂vi/∂xi = 0, i.e. the fluctu-
ations are also incompressible.
Using

σ̃ij = Σij + σij , (7)

with 〈σij〉 = 0, the equation of motion averaged over time gives:

∂

∂xj
VjVi +

∂

∂xj
〈vjvi〉 =

1
ρ

∂

∂xj
Σij , (8)

where we have used ∂Vi/∂t = 0 and the incompressibility of the mean flow
and the fluctuations. The term < vjvi > represents the averaged transport of
the fluctuations of the momentum by the fluctuations of the velocities. This
is the turbulent transport. It is non zero only if the turbulent velocities in
the different directions are correlated. It is an experimental fact that this is
in general the case for shear turbulence. Equation (8) shows that momentum
is transferred between the fluctuations and the mean flow through the term
∂ < vjvi > /∂xj .
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We can rewrite (8) under the form:

∂

∂xj
VjVi =

1
ρ

∂

∂xj
(Σij + τij) , (9)

where τij = −ρ 〈vjvi〉 is called the Reynolds stress tensor, or turbulent stress.
This is the contribution from the fluctuations to the averaged total stress
tensor Σij + τij . Note that if we had not supposed < vi >= 0, we would
also have had terms like Vj < vi >, representing transport (or advection) of
mean momentum by the fluctuations. This is what Lynden–Bell & Kalnajs
(1972) call lorry–transport, because it is a direct “shipment” by the equilib-
rium flow. Formally, this term is not part of what we call the turbulent stress
however.

As we have no expression for the components of τij (six of which are
independent), the problem has more unknowns than equations. This is the
well–known closure problem of turbulence. Since τij appears in the same way
as Σij in (9), it is tempting to express τij by analogy with Σij , which depends
on the molecular motion. This is the basis for the mixing length theory, in
which τij is written exactly like the tensor deriving from molecular motions
using a so–called turbulent viscosity νT . By analogy with the expression (1)
for the molecular viscosity, it is supposed that νT ∼ vTΛ, where vT is a
characteristic velocity of the turbulent eddies and Λ is the so–called mixing
length, which is the “mean free path” of the eddies, i.e. the distance they
travel through before they mix with their environment.

The same analogy is used in accretion disk theory through the α model
that we shall describe below.

It is important to note that the basis for this analogy is very weak. For a
thorough discussion of the differences between molecular and turbulent trans-
port, we refer the reader to Tennekes & Lumley (1972).

In particular, while representing gross transport by an effective viscosity
can often be useful, doing a detailed stability analysis on a viscous fluid model
for turbulent flow is generally not self–consistent, and can be very misleading
(e.g. [13]).

Note that the above discussion applies to shear turbulence only, i.e. flows
where the fluctuations get their energy from the mean velocity gradients.
Transport of momentum may not be nearly as efficient when the energy source
for the fluctuations is a gradient of temperature or magnetic field for instance.
As a matter of fact, there are strong indications that the transport of momen-
tum associated with thermal convection is orders of magnitude weaker than
that associated with shear turbulence ([3] and references therein).

Although turbulence has been considered as a way of transporting angular
momentum in accretion disks for more than fifty years, it is only relatively
recently that an instability able to extract the energy of the shear and put
it in the fluctuations has been elucidated. This instability, which requires a
magnetic field, is described in the next section.
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3 The Magnetorotational Instability

Three types of waves can propagate in a magnetized fluid: the Alfvén waves,
the fast MHD (or magneto–acoustic) waves and the slow MHD waves. The
Alfvén waves are transverse (with no motion in the plane defined by the
wavenumber and the magnetic field) and propagate along the field lines. They
do not involve any compression across the field lines and their restoring force is
the magnetic tension. These waves are analogous to the waves which propagate
along a stretched string. The fast and slow MHD waves are associated with
motions only in the plane defined by the wavenumber and the magnetic field.
For the fast mode, the magnetic and thermal pressures act in phase. If the
Alfvén speed is large compared to the sound speed, the slow mode is an
acoustic wave propagating along the field lines, whereas if the Alfvén speed
is small compared to the sound speed, it degenerates into an Alfvén mode in
its dispersion properties (the eigenvector is distinct from that of the Alfvén
mode however, as the motions are not in the same plane). For the fast mode
it is the opposite.

In the absence of rotation, these modes are stable. However, Balbus &
Hawley (1991) have shown that when rotation is introduced, the slow mode
can become unstable, and this what we describe now.

3.1 Linear Instability

We consider the simplest system in which the instability can develop. This is
an axisymmetric disk with a vertical uniform magnetic field. For the original
presentation, which includes the case of a radial field, see [1], and for the
stability of a toroidal field see [2, 7, 18, 29].

Since it is the slow mode which is destabilized, one can consider an in-
compressible fluid (in which the fast mode has a frequency which is infinite).
The system of equations describing the fluid is then:

∂B
∂t

= ∇× (v×B) , (10)

∇ · v = 0 , (11)

∂v
∂t

+ (v · ∇)v = −1
ρ
∇P +

1
μ0ρ

(∇×B)×B− ∇Ψ , (12)

where B is the magnetic field, v is the fluid velocity, ρ is the density of mass,
P is the pressure, Ψ is the gravitational potential due to the central star and
μ0 is the permeability of vacuum.

We use the cylindrical coordinates (r, φ, z) and we denote the unit vectors
in the three directions by er, eφ and ez. We consider equilibrium quantities
that are uniform and a vertical magnetic field. The velocity is v0 = rΩ(r)eφ.
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We now suppose that this equilibrium is slightly perturbed and we look for
solutions proportional to exp[i (ωt− kzz − krr)]. Here we consider axisym-
metric perturbations, but more general solutions can be obtained (see the
above mentioned papers). We also consider large vertical wavenumbers, such
that |kz | � |kr| and |kr | � 1/r. Then, the linearized system of equations
leads to the following dispersion relation:

ω4 − ω2

(
2k2v2

A +
dΩ2

dlnr
+ 4Ω2

)
+ k2v2

A

(
k2v2

A +
dΩ2

dlnr

)
= 0 , (13)

where vA is the Alfvén speed. Equation (13) is a quartic for ω2 which solutions
are real. Therefore there is instability if ω2 < 0, which requires:

k2v2
A < −dΩ2

dlnr
. (14)

This criterion has a very simple physical explanation. It states that there is
an instability when the magnetic tension that acts on a segment of a field line
is smaller than the net tidal force (i.e. centrifugal force minus gravitational
force) acting on it.

For a given equilibrium field B, and therefore a given Alfvén speed vA,
there will always be a wavenumber k such that this inequality is satisfied
provided the right hand side is positive. Therefore, all the disks with

dΩ2

dlnr
< 0 (15)

are unstable, and this is the criterion for instability.
The heart of the instability resides in the fact that a perturbed fluid ele-

ment tends to conserve its angular velocity when a magnetic field is present.
This is to be contrasted with a non magnetized disk, in which a perturbed
element tends to conserve its specific angular momentum. When displaced
inward therefore, it has too much angular momentum for its new location (as
the angular momentum increases outward in an accretion disk), and it moves
back to its initial unperturbed position. When a magnetic field is present, the
magnetic tension along the field line tends to enforce isorotation of the ele-
ments to which it is connected. A fluid element displaced inward has therefore
a lower angular velocity than the elements at its new location, and thus not
enough angular momentum for its new position. As a result it sinks further in.
On the opposite, a fluid element connected to the same field line and displaced
outward will tend to move further out. Angular momentum is transferred via
magnetic torques from the inner fluid element to the outer fluid element. Note
that the source of free energy for the instability is not in the magnetic field,
but in the disk differential rotation. The magnetic field just provides a path
to extract the energy.

From (13), we can write the negative values of ω2 as a function of k2v2
A,

and show that the maximum growth rate is:
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|ωmax| =
1
2

∣∣∣∣ dΩdlnr
∣∣∣∣ . (16)

For a Keplerian disk,

|ωmax| =
3
4
Ω (17)

and is attained for

kvA =
√

15
4

Ω . (18)

This holds even if the field has radial and azimuthal components and if
the perturbed quantities are allowed to vary with r and φ provided we then
replace kvA by k · vA. Note that the non–axisymmetric case is more subtle
though, as in that case plane waves cannot be sustained, being sheared out
by the differential rotation. If we write k = krer + (m/r)eφ + kzez, with m
being the azimuthal wavenumber, then kr is time dependent and

kr(t) = k0 −mt
dΩ

dr

[11], which means that a disturbance always becomes trailing in a disk where
the angular velocity decreases outward. If kr is initially large and positive
(leading disturbance), then the mode is stable as indicated by (14). But as
time goes on, kr decreases, so that k enters a region of instability. As kr be-
comes negative and keeps decreasing though, the mode becomes stable again.
Formally, the instability is therefore not purely exponential. The important
question however is whether the mode can be amplified significantly before its
wavelength becomes small enough to be affected by ohmic resistivity. This, of
course, depends on the magnetic Reynolds number.

We have seen above that the so–called magnetorotational or Balbus–
Hawley instability can develop in any disk in which the angular velocity de-
creases outward. In principle there is no other condition. However, it may be
that the scale of the modes which are unstable according to (14) do not fit
into the disk, i.e. they have a wavelength larger than the disk semithickness
H . This is the case if vA/Ω > H . Since in a thin disk ΩH ∼ cs, the disk will
be stable if vA > cs.

Another condition which is implicit in the above presentation is, of course,
that the magnetic field be coupled to the fluid. This may not be the case
everywhere in protostellar disks, which are rather cold and dense [9, 10].

3.2 Nonlinear Evolution

Numerical simulations have shown that this instability puts the energy it
extracts from the disk differential rotation into fluctuations which transport
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angular momentum outward (see [3] and references therein). Numerical simu-
lations also show that most of the transport is done by the (magnetic) Maxwell
stress, which dominates over the (hydrodynamic) Reynolds stress. Further-
more, magnetic fields are regenerated through a dynamo action so that the
mechanism can sustain itself in an isolated system.

Long before a mechanism for producing turbulence in accretion disks had
been identified, Shakura & Sunyaev (1973) proposed a prescription for model-
ing turbulent disks. We now describe this prescription, and discuss its validity
in the context of magnetic turbulence.

4 Disk Models and Simulations

4.1 Evolution of Turbulent Disks

Here we consider an axisymmetric disk rotating around a central object. We
suppose the motion is in the plane of the disk, or, equivalently, we use the
vertically averaged equations of mass conservation and motion. The velocity
is v ≡ (ur, rΩ + uφ). The term rΩ is the circular velocity around the central
mass, and (ur, uφ) are the components of the fluctuation velocity. Note that
as the disk accretes, there is a net radial drift and the mean value of ur is non
zero. The equation of mass conservation and the azimuthal component of the
equation of motion are:

∂Σ

∂t
+

1
r

∂

∂r
(rΣvr) = 0 , (19)

Σ

(
∂vφ
∂t

+ vr
∂vφ
∂r

+
vrvφ
r

)
= 0 , (20)

where Σ is the surface density. Note that we have not included the viscous
force arising from molecular viscosity as it is negligible. Multiplying (20) by
r and using (19), we obtain the angular momentum equation:

∂

∂t
(rΣ (rΩ + uφ)) +

1
r

∂

∂r

[
r2Σ (rΩ + uφ) ur

]
= 0 . (21)

As pointed out by Balbus & Papaloizou (1999), to get a diffusion equation
describing the disk evolution we need to smooth out the fluctuations over
radius. To do so, we average the above equation over a scale large compared
to that of the fluctuations, but small compared to the characteristic scale of
the flow (i.e. r). Equation (21) then yields:

∂

∂t

(
Σr2Ω

)
+

1
r

∂

∂r

(
Σr3Ω < ur > +Σr2 < uruφ >

)
= 0 , (22)

where the brackets denote the radial average and we have neglected < uφ >
compared to rΩ in the time derivative. This is justified because | < uφ > | 	
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rΩ and the systematic, evolutionary time derivative of < uφ > is limited. In
the radial divergence term however, both < ur > and < uruφ > are second
order, and therefore we retain all the terms. This equation is the same as that
describing a viscous flow with v ≡ (ur, rΩ) and a stress tensor σrφ ≡ −Σ <
uruφ >.

There are two contributions to the flux of angular momentum: the term
Σr2Ω < ur > is the mean angular momentum advected through the disk by
the velocity fluctuations (because of the accretion of mass), whereas the term
Σr < uruφ > represents the angular momentum fluctuations transported by
the velocity fluctuations.

Using (19) averaged over radius, we can rewrite (22) under the form:

rΣ < ur >= −
[
d

dr

(
r2Ω
)]−1

∂

∂r

(
Σr2 < uruφ >

)
.

Using (19) again to eliminate < ur >, this leads to the diffusion equation:

∂Σ

∂t
=

1
r

∂

∂r

{[
d

dr

(
r2Ω
)]−1

∂

∂r

(
Σr2 < uruφ >

)}
. (23)

In a steady state, (19) gives rΣ < ur >= constant. Then the accretion
rate

Ṁ ≡ −2πrΣ < ur > (24)

is constant through the disk. Integration of the angular momentum equation
(22) then yields:

Σ < uruφ >=
Ṁ

2π
Ω

[
1 −
(
Ri
r

)1/2
]
, (25)

where Ri is the disk inner boundary. We have assumed here that the turbulent
stress < uruφ > vanishes at the disk inner edge (i.e. there is no torque at
the boundary) and that the disk is Keplerian, so that Ω ∝ r−3/2. The above
equation shows that for the mass to be accreted inward (i.e. < ur > negative),
the flux of angular momentum due to the fluctuations has to be positive, i.e.
the fluctuations have to transport angular momentum outward.

4.2 The α Prescription

We pointed out that the angular momentum equation (22) is analogous to
that describing a viscous flow with v ≡ (ur, rΩ) and a stress tensor σrφ ≡
−Σ < uruφ >. Therefore, it is tempting to push the analogy further and
express the turbulent stress −Σ < uruφ > as if it derived from an enhanced
‘turbulent viscosity’ ν, defined such that:
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−Σ < uruφ >≡ Σνr
dΩ

dr
. (26)

In a Keplerian disk, this gives:

< uruφ >∼ νΩ . (27)

The equations presented in the previous section have been derived by
Lynden–Bell & Pringle (1974; see also [22]) assuming a viscous flow with this
expression of the stress tensor.

The prescription proposed by Shakura & Sunyaev (1973) consists in writ-
ing ν = vtH , where H is the disk thickness, assumed to be the maximum scale
of the turbulent cells, and vt is the turbulent velocity. They further define

α ≡ vt
cs

,

where cs is the sound velocity. Note that α < 1, otherwise the fluctuations
would dissipate into shocks in such a way as to restore vt < cs. Equation (27)
can then be rewritten under the form:

< uruφ >∼ αc2s . (28)

Here we have used the fact that in a thin disk H ∼ cs/Ω.
So far we have focussed on non magnetized disks. In these, there are strong

indications that < uruφ > is either zero or negative. Magnetism is needed to
correlate the velocities. The above discussion does apply to magnetized disks
provided we replace < uruφ > by < uruφ − uAruAφ >, where (uAr, uAφ) are
the components of the fluctuations of the Alfvén velocity [3, 24]. The extra
term represents the Maxwell stress. We then have:

α ∼ < uruφ − uAruAφ >

c2s
. (29)

4.3 Validity of the α Prescription

The validity of the α prescription in the context of magnetic turbulence was
discussed by Balbus & Papaloizou (1999). They first pointed out that, as long
as < uruφ > (or < uruφ − uAruAφ >) is positive, the disk dynamics is the
same as if it were evolving under the action of a viscosity. In that case indeed,
the diffusion coefficient in (23) is positive. We can then always define an α
parameter according to (28), although α may not be constant through the
disk.

Note however that this implicitly assumes it is possible to average the
equations over radius in the way described in § 4.1. If the scale of the fluctua-
tions and the characteristic disk scale are not well separated, such an average
cannot be performed. Since the maximum scale of the fluctuations is of order
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the disk thickness H , this procedure requires that there is a scale large com-
pared to H and small compared to r. This condition may be only marginally
fulfilled in protostellar disks, in which H may be up to 0.1–0.2r.

Balbus & Papaloizou (1999) further noted that for the α prescription to
apply, the disk had to behave viscously not only in its dynamics but also in
its energetics. The key point here is that a viscous disk dissipates locally the
energy it extracts from the shear, whether in a steady state or not. This may
not be the case in a turbulent disk where, if the turbulent cascade is not
efficient, part of the energy may be advected with the flow. As we have not
addressed the energetics of viscous disks above, we will not go into the details
of the discussion here. These can be found in Balbus & Papaloizou (1999), who
showed that in disks subject to MHD turbulence the energy extracted from
the shear is indeed dissipated locally (through the turbulent cascade) whether
the disk is evolving or not. Note that this is in general not the case when the
turbulence is due to self–gravitating instabilities. In that case indeed, part of
the energy is transported by waves through the disk.

4.4 Numerical Simulations

The α parameter in numerical simulations can be calculated using (29). In
global simulations of unstratified disks (e.g. [12, 26]), it is found that α is a
few times 10−3 when the initial imposed magnetic field has zero net flux. This
is independent of the geometry of the field. If there is a nonzero net toroidal
or vertical magnetic flux, α is a few times 10−2 or 10−1, respectively.

It is important to note that in all simulations, the value of α averaged
over azimuth and the disk thickness varies locally in time and radius on short
timescales, comparable to the rotational timescale. The variations typically
reach an order of magnitude [26]. This indicates that the α–disk model is not
a good approximation for studying processes that affect the disk on dynamical
timescales.
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Abstract. A brief review is given of selected results of our analytical and numer-
ical work on the construction of time-independent and time-dependent MHD mod-
els for non relativistic astrophysical outflows and jets. The equations for steady
MHD plasma flows are first outlined. Next, 1-D spherically symmetric outflows
are briefly discussed, namely the Parker thermally driven nonrotating wind, as
the classical prototype of all astrophysical outflows and the Weber-Davis magne-
tocentrifugally driven wind together with its astrophysical implications for mag-
netic braking, etc. Then, we turn to the 2-D MHD problem for steady and non
steady 2-D axisymmetric magnetized and rotating plasma outflows. The only avail-
able exact solutions for such outflows are those in separable coordinates, i.e. those
with the symmetry of radial or meridional self-similarity. Physically accepted solu-
tions pass from the fast magnetosonic separatrix surface in order to satisfy MHD
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causality. An energetic criterion is outlined for selecting radially expanding winds
from cylindrically expanding jets. The basics of jet acceleration, collimation, min-
imum fieldline inclination and angular momentum removal are illustrated in the
context of radially self similar models. Numerical simulations of magnetic self-
collimation verify several results of analytical steady solutions. The outflow from
solar-type inefficient magnetic rotators is very weakly collimated while that from a
ten times faster rotating YSO produces a tightly collimated jet. We also propose
a two-component model consisting of a wind outflow from the central object and a
faster rotating outflow launched from the surrounding accretion disk which plays the
role of the flow collimator. We also briefly discuss the problem of shock formation
during the magnetic collimation of wind-type outflows into jets.

Key words: MHD – solar wind – ISM / Stars: jets and outflows – galax-
ies: jets

1 Introduction

Plasma outflows from the environment of stellar or galactic objects, in the
form of uncollimated winds or collimated jets is a widespread phenomenon
in astrophysics, Fig. 1. The most dramatic illustration of such highly colli-
mated outflows may be perhaps found in the relatively nearby regions of star

Fig. 1. Large scale MHD astrophysical outflows range from the uncollimated solar
wind, to the collimated jets associated with YSO’s, planetary nebulae nuclei, pulsars,
low- and high-mass X-ray binaries, AGN and quasars. http://sparky.rice.edu/ har-
tigan/, http://hubblesite.org/, http://chandra.harvard.edu/
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formation, Fig. 2; for example, in the Orion Nebula alone the Hubble Space
Telescope (HST) has observed hundreds of aligned Herbig-Haro objects [45].
In particular, HST observations show that several jets from young stars are
highly collimated within about 30–50 AU from the source star with jet widths
of the order of tens of AU, although their initial opening angle is rather large,
e.g. > 60◦, [1, 51]. There is also a long catalogue of jets associated with AGN
and possibly supermassive black holes [3]. To a less extend, jets are also as-
sociated with older mass losing stars and planetary nebulae [39], symbiotic
stars [33], black hole X-ray transients [43], supersoft X-ray sources [34], low-
and high-mass X-ray binaries and cataclysmic variables [60]. Even for the two
spectacular rings seen with the HST in SN87A, it has been proposed that
they may be inscribed by two precessing jets from an object similar to SS433
on a hourglass-shaped cavity which has been created by nonuniform winds of
the progenitor star [13, 14]. Also, in the well known long jet of the distant

Fig. 2. Herbig-Haro 49/50, located in the Chamaeleon I star-forming complex, a
region containing more than 100 young stars, is believed to be shaped by a cosmic jet
packing a powerful punch as it plows through clouds of interstellar gas and dust. The
spiral appearance of the jet might be indicative of helical magnetic fields confining
the jet. (http://sscws1.ipac.caltech.edu/Imagegallery)
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radio galaxy NGC 6251 [32], an about 103 light-year-wide warped dust disk
perpendicular to the main jet’s axis has been observed by HST to surround
and reflect UV light from the bright core of the galaxy which probably hosts
a black hole [20]. Last but not least, the most powerful sources in our Uni-
verse, gamma ray bursts, seem to be associated to the jet phenomenon and
are understood as gamma ray synchrotron emission from ultrarelativistic jets.

In the theoretical front, the morphologies of collimated outflows have been
studied, to a first approximation, in the framework of ideal steady or time-
dependent magnetohydrodynamics (MHD). In steady studies, after the pio-
neering 1-D (spherically symmetric) works of Parker [50], Weber & Davis [79]
and Michel [42], Suess [63] and Nery & Suess [44] first modelled the 2-D (ax-
isymmetric) interaction of magnetic fields with rotation in stellar winds, by a
linearisation of the MHD equations in inverse Rossby numbers. Although their
perturbation expansion is not uniformly convergent but diverges at infinity,
they found a poleward deflection of the streamlines of the solar wind caused
by the toroidal magnetic field. Blandford & Payne [4] subsequently demon-
strated that astrophysical jets may be accelerated magnetocentrifugally from
Keplerian accretion disks, if the polodial fieldlines are inclined by an angle of
60◦, or less, to the disk midplane (but see also, (17)). This study introduced
the often used “bead on a rotating rigid wire” picture, although these solu-
tions are limited by the fact that they contain singularities along the system’s
axis and also terminate at finite heights above the disk, [26, 75]. Sakurai [53]
extended the Weber & Davis [79] equatorial solution to all space around the
star by iterating numerically between the Bernoulli and transfield equations;
thus, a polewards deflection of the poloidal fieldlines was found not only in
an initially radial magnetic field geometry, but also in a split-monopole one
appropriate to disk-winds, [54]. The methodology of meridionally self-similar
exact MHD solutions with a variable polytropic index was first introduced
by Low & Tsinganos [40, 66] in an effort to model the heated axisymmetric
solar wind. Heyvaerts & Norman [30, 31] have shown analytically that the
asymptotics of a particular fieldline in non isothermal polytropic outflows is
parabolic if it does not enclose a net current to infinity; and, if a fieldline ex-
ists which does enclose a net current to infinity, then, somewhere in the flow
there exists a cylindrically collimated core. Later, Bogovalov [6] showed ana-
lytically that there always exists a fieldline in the outflowing part of a rotating
magnetosphere which encloses a finite total poloidal current and therefore the
asymptotics of the outflow always contains a cylindrically collimated core. In
that connection, it has been shown in [5] that the poloidal fieldlines are de-
flected towards the polar axis for the split monopole geometry and relativistic
or nonrelativistic speeds of the outflowing plasma. Sauty & Tsinganos [55]
have self-consistently determined the shape of the fieldlines from the base of
the outflow to infinity for nonpolytropic cases and provided a simple crite-
rion for the transition of their asymptotical shape from conical (in inefficient
magnetic rotators) to cylindrical (in efficient magnetic rotators). They have
also conjectured that as a young star spins down loosing angular momentum,
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its collimated jet-type outflow becomes gradually a conically expanding wind.
Nevertheless, the degree of the collimation of the solar wind at large helio-
centric distances remains still observationally unconfirmed, since spacecraft
observations still offer ambiguous evidence on this question.

Another interesting property of collimated outflows has emerged from
studies of various self-similar solutions, namely that in a large portion of
them cylindrical collimation is obtained only after some oscillations of de-
caying amplitude in the jet-width appear [73]. In a series of papers, Sauty
and collaborators [56, 57, 58, 59] have elaborated the physics of accelera-
tion and collimation of MHD outflows by studying quasi-analytically merid-
ionally self-similar outflows. Similarly, Vlahakis et al. [75] have presented
the first quasi-analytical example of a radially self-similar outflow which
crosses the fast magnetosonic separatrix. The general properties of these MHD
separatrices of the MHD equations have been discussed by Tsinganos and
collaborators [68]. Radially self-similar models with cylindrical asymptotics
for self-collimated and magnetically dominated outflows from accretion disks
have been also constructed [46]. All existing cases of self-similar, jet- or, wind-
type exact MHD solutions have been unified Vlahakis & Tsinganos [74] in a
systematic analytical treatment wherein all available today examples of exact
solutions emerge as special cases of a general formulation while at the same
time new families with various asymptotical shapes, with (or without) oscilla-
tory behaviour emerge as a byproduct of this systematic method. Altogether,
some general trends on the behaviour of stationary, analytic, axisymmetric
MHD solutions for MHD outflows seem to be well at hand.

However, observations seem to indicate that jets may inherently be vari-
able. Thus, time-dependent simulations may be useful for a detailed compar-
ison with the observations. Uchida & Shibata [71] were the first to perform
time-dependent simulations and demonstrate that a vertical disk magnetic
field if twisted by the rotation of the disk can launch bipolar plasma ejec-
tions through the torsional Alfvén waves it generates. However, this mecha-
nism applies to fully episodic plasma ejections and no final stationary state
is reached to be compared with stationary studies. Similar numerical simu-
lations of episodic outflows from Keplerian disks driven by torsional Alfvén
waves on an initially vertical magnetic field have been presented in Good-
son et al. [47, 48]. [27] have proposed a time-dependent jet launching and
collimating mechanism which produces a two-component outflow: hot, well
collimated jet around the rotation axis and a cool but slower disk-wind. Nu-
merical viscosity however results in nonparallel flow and magnetic fields in the
poloidal plane in the limited grid space of integration. Washimi & Shibata [78]
modelled axisymmetric thermo-centrifugal winds with a dipole magnetic flux
distribution B2

p(θ) ∝ (3 cos2 θ + 1) on the stellar surface (and a radial field
in [77]). In this case the magnetic pressure distribution varies approximately
as B2

φ ∝ B2
p sin2 θ such that it has a maximum at about cos−12θo ≈ −1/3,

or, θo ≈ 55◦. As a result, the flow and flux is directed towards the pole and
the equator from the midlatitudes around θo. The study was performed for
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uniform in latitude rotation rates and up to 60 solar radii in the equatorial
plane. Bogovalov [7, 8] modelled numerically the effects of the Lorentz force
in accelerating and collimating a cold plasma with an initially monopole-type
magnetic field, in a region limited also by computer time, i.e. the near zone
to the central spherical object. In a series of papers, Bogovalov & Tsinganos
[9, 10, 11, 69, 70] have used a novel way to model numerically MHD out-
flows to very large distances by first integrating the time-dependent MHD
equations in the near zone containing the critical surfaces and then extending
these solutions to unlimited distances along the jet in the superfast regime.
In this review we shall constrain our attention only on jets and not to their
associated accretion disks. For example, in [38], the reader may find more
on a global jet/circulation model for young stars, or, in [19, 37] more on
laboratory plasma jets and magnetic tower outflows from a radial wire
array in the Z-pinch. We do not intend to discuss instabilities in jets and
the interested reader may see, e.g. [35] for pressure and magnetic shear-driven
instabilities and [64] for Kelvin-Helmholtz instabilities in rotating MHD jets.
We further refer the interested reader to the review article on accretion disks
by J. Ferreira in this Volume and references therein, e.g. [22, 23], or other
reviews on the subject, e.g. [15, 24, 28, 41, 52].

This review lecture is organised as follows. Section 2 briefly outlines the
governing MHD equations and Sect. 3 the basics of 1-D HD outflows, i.e. the
classical solar wind theory. Then, Sect. 4 reviews 1-D rotating MHD outflows
introducing the concepts of MHD critical points, angular momentum loss via
magnetized winds and slow/fast magnetic rotators. Section 5 deals with some
simple physical results pertinent to disk winds, such as the acceleration and
collimation of the jet, the minimum inclination angle of the fieldlines in the
disk midplane and the rate of angular momentum removal from the disk.
Section 6 deals with 2-D steady MHD outflows and in particular the various
classes of self-similar solutions, the nature of the MHD separatrices selecting
a physically acceptable solution and the criteria for collimation. Finally, in
Sect. 7 we turn to some recent results on numerical simulations of MHD
outflows and give a simple example to explain why magnetized and rotating
jets are collimated. At the end we and briefly outline our two-component
model which we believe describes appropriately cosmical jets.

2 MHD Equations

The interaction of magnetized plasmas is governed by the familiar MHD equa-
tions (Figs. 3, 4). They consist of Maxwell’s equations:

∇ · E = 4πδ ≈ 0 , ∇ · B = 0 , (1)

∇ × E = −1
c

∂B

∂t
, ∇ × B =

4π
c

J +
1
c

∂E

∂t
� 4π

c
J , (2)
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Fig. 3. Illustration of the interaction of magnetized and rotating plasmas with
density and pressure (ρ,P ) in hydromagnetic fields, (V , B)

coupled to Ohm’s law for a plasma of very high electrical conductivity σ,

E +
V × B

c
=

J

σ
� 0 , (3)

Newton’s law expressing conservation of angular momentum,

ρ
∂V

∂t
+ (ρV · ∇)V = −∇P +

J × B

c
− ρG , (4)

the continuity equation expressing conservation of mass,

∇ · ρV +
∂ρ

∂t
= 0 , (5)

and finally an equation for energy conservation,

ρ

[
P

d
dt

(
1
ρ

)
+

d
dt

(
P

ρ(Γ − 1)

)]
= ρ

∂h

∂t
− ∂P

∂t
+ ρV ·

[
∇h− ∇P

ρ

]
= q . (6)

The symbols have their usual meaning, i.e. V (x1, x2, x3, t), B(x1, x2, x3, t) are
the bulk flow speed and magnetic field in the plasma which is generated by an
electric current with surface density J(x1, x2, x3, t), G(x1, x2, x3) is the exter-
nal gravitational field, ρ(x1, x2, x3, t) and P (x1, x2, x3, t) are the plasma den-
sity and pressure, h(x1, x2, x3, t) the enthalpy of the gas [= (Γ/Γ − 1)(P/ρ)]
and finally q(x1, x2, x3, t) denotes the volumetric rate of energy addition, all
expressed in some curvilinear coordinates (x1, x2, x3).

Note that the above set of equations is a rather simplified version of the
original full MHD equations for ideal plasmas which describe to a zeroth
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Fig. 4. Illustration of the hydrodynamic (HD) and magnetohydrodynamic (MHD)
interaction

order approximation the hydromagnetic interaction in typical astrophysical
plasmas, such as those encountered in stellar atmospheres and star formation
regions. In such cases, the following approximations hold:

• for nonrelativistic motion, such as is the case in jets associated with star
forming regions, the bulk flow speed is much less than the speed of light,
V/c 	 1.

• the Spitzer electrical conductivity is rather high for the typical rela-
tively high astrophysical temperatures of thousands to millions of de-
grees, σ � 6 × 106T 3/2/sec wherein the plasma rather behaves like a
superconductor.

• from Ohm’s law in the limit of high electrical conductivity it follows that
the electric field in an inertial frame is,

J = σ

[
E +

V

c
× B

]
, σ → ∞ ⇒ E +

V

c
× B � 0 =⇒ E = −V

c
× B

with the result that the displacement current in Ampere’s law is negligible.
To see that, denote by (� − τ) the characteristic spatial-temporal scales
in the system such that τ � �/V . Then, since the electric field is of order
E ∼ (V/c)B it follows that Maxwell’s displacement current is

1
c

∂E

∂t
� V B

cτ
=
V 2

c

B

�
� cB

�

(
V

c

)2

,

i.e. of the small order V 2/c2 with respect to the conduction current which
is of the order c|∇ × B| � cB/�.

• the polarization current Jδ = δV associated with deviations from neutral-
ity in ∇ · E = 4πδ is negligible, Jδ = V δ = V E/� = (cB/�)(V 2/c2) being
also of order V 2/c2 compared to the conduction current cB/�.
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• the thermal conductivity κ of the gas is also high for the typical rela-
tively high astrophysical temperatures of thousands to millions of degrees,
κ � 6 × 10−6T 5/2erg/cm◦Ksec. This has the result, for example, that the
solar corona extends far in the interplanetary space, as we shall see in the
next section.

• the viscosity (mainly from the ions) is also negligible for the diluted astro-
physical gases, μ � 10−16T 5/2 g/cmsec, a result highlighting the need for
an anomalous viscosity in order to account for angular momentum transfer
in astrophysical discs.

As an illustrative example, consider a plasma with temperature T ∼ 106K and
density n ∼ 108 cm−3, i.e. values encountered in a stellar corona. The electri-
cal conductivity is comparable to that of Copper (σCu � 1016/sec), while the
thermal conductivity is also high χ = (κ/cp) � 6 × 108/109 ∼ 0.6 g/cmsec
and the viscosity negligible, μ � 0.1 g/cmsec. The Debye length λD is of the
order of a cm [λD = 6.9(T/n)1/2 cm], much smaller than the typical dimension
� of such systems and thus quasi-neutrality holds. The Larmor radius of the
protons rL = 10−4V⊥/B cm for a 1 Gauss magnetic field and a few hundred
km/sec bulk flow speed V is about 10 m, while the collisional Coulomb mean
free path is λ = 3 × 10−12V 4/n ≈ 3000 km. Then, since � � λ � rL � λD
and also the number of electrons inside a Debye sphere is large (of the order
of 109), the fluid approximation is very good and MHD provides an excellent
description of the plasma.

Similar is the situation for the plasma of YSO jets, although their tem-
perature, density and ionization fraction are lower, e.g. T ∼ (103 − 104)K,
n ∼ (102 − 103) cm−3, while observations show that optical HH jets are mod-
erately ionized with ionization fractions ni/nn = (0.5 – 0.01) and lower values
at the optically invisible parts of the jet [2, 25]. Nevertheless, again the di-
mension � of the system (with jet radii Rj of the order of several AU), far
exceeds the corresponding Debye length [λD = 6.9(T/n)1/2 cm, i.e. of the or-
der of 1 m] while the number of electrons inside a Debye sphere ND is still
large [ND = n4πλ3

D/3, i.e. of the order of 107]. The collisional Coulomb mean
free path [λ = 3 × 10−12V 4/n cm] may be of the order of an AU, but as in
the case of the solar wind, the proton Larmor radii [rL = 10−4V⊥/B cm] are
much smaller and thus the magnetic field ties the charged particles close to
each other. Then again � � λ� rL � λD holds and the fluid approximation
is a very good one, concluding that MHD can still provide the best zeroth
order description of the dynamics of this plasma as well.

3 The Parker Thermally Driven, Nonrotating Wind

It is beyond doubt that Parker’s [49] elegant theory of the solar wind plays
a unifying and central role in the understanding of large scale astrophysical
plasma outflows. In addition, this theory remains today as one of the most
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Fig. 5. Solar winds’s hydromagnetic field (left) and the antisolar alignment of comet
tails (right)

beautiful topics of theoretical astrophysics being at the same time a classical
theory of striking mathematical simplicity which nevertheless is able to explain
a rather complex and wide spread astrophysical phenomenon.

3.1 Basic Facts Leading to the Solar Wind

The basic facts that underline the existence of the Parker solar wind are:

• The high temperature T of the solar corona (T ≈ 106 − 107◦K) combined
with the low temperature of the interstellar medium (ISM) (T ≈ 100◦K).

• The high thermal conductivity κ of the plasma: q = −κ(T )∇T .

For plasmas of such high T, the thermal conductivity coefficient is given
by κ(T ) ≈ ×10−13 T 5/2cal/cm sec K.

At typical coronal temperatures T = 107K −→ κ ≈ 1cal/cm sec K

(note that for Copper, Silver: κ ≈ 1cal/cm sec K )

• Because of this high value of κ the temperature T should be homogenized:

∇ · [κ(T )∇T ] = 0 =⇒ T =
To
R2/7

At R ≈ 104 (ISM) =⇒ T =
106

108/7
>> 100K.

It follows that inevitably the atmosphere expands.

• Formally, this can be also seen from Bernoulli’s law:

kTo
γ − 1

+
V 2
o

2
− GM

ro
=

kT∞
γ − 1

+
V 2
∞
2

− GM

r∞
,
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taking into account that in the LHS the positive sum of the enthalpy and
the gravitational potential is asymptotically transferred to kinetic energy
of the plasma in the RHS where the gravitational and enthalpic terms are
negligible. In other words, we have eventually a transfer of random thermal
energy (enthalpy) from the base of the outflow to directed kinetic energy
of the plasma further away.

This summarizes the physics of the solar wind phenomenon which was pro-
posed theoretically by Parker in 1958 [49] and was observed by the spacecraft
Mariner 2 in 1962.

3.2 Parker’s Isothermal Wind Theory

The basic equations of Parker’s simplified solar wind theory are:

d

dr

(
ρV r2

)
= 0 (mass conservation) , (7)

ρV
dV

dr
= −dP

dr
− ρ

GM

r2
(momentum conservation) , (8)

P = ρV 2
s , Vs =

√
2kT0

m
(equation of state) , (9)

where Vs is the sound speed, i.e. the most probable proton speed in a
Maxwellian distribution with temperature T0. The dimensionless distance R
and density ρ are given in units of the base radius r0 and base density ρ0,

R =
r

r0
, M =

V

Vs
. (10)

In terms of the dimensionless parameter λ,

λ =
1
2

(
Vesc
Vs

)2

=
GMm

2r0kT0
� 12 for T0 � 106 ◦K ,Vs = 131 km/s , (11)

we may combine the above Equation to obtain two equations for ρ(R) and
M(R):

d

dR

(
ρMR2

)
= 0 =⇒ ρMR2 = μ = const .

ρM
dM

dR
+

dρ

dR
+ λ

ρ

R2
= 0 =⇒ 1

M2

dM2

dR
=

2
R2

2R− λ

M2 − 1
. (12)

The last equation can be integrated to give Bernoulli’s integral:
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lnM − M2

2
− λ

R
+ lnR2 = lnB = const . (13)

The momentum equation (12) has a critical point at 2Rc = λ, M = 1, Fig. 7,
wherein dM2/dR = 0/0. In the vicinity of this critical point we may write R =
Rc (1 + ε) , M = Mc (1 + ξ). Figures 6, 7 illustrate the characteristic saddle-
type topology around this singularity. Note that exactly the same procedure
can be applied to the case of polytropic winds with γ �= 1 with similar results,
i.e. we obtain an analogous Bernoulli integral, critical point and topology
of the solutions in the plane (M,R). In the following, we briefly outline a
systematic procedure for obtaining the critical points of the wind problem,
since this may be also followed in the case of polytropic magnetized winds
discussed in the next section.

From the combination of the two integrals expressing energy and mass
conservation, we may obtain the energy as a function of the two variables of
the radial distance r and the density ρ:

E = 1
2V

2 + γ
γ − 1ρ

γ−1 − GM
r ,

ρV r2 = Fm = const. ,

⎫⎪⎬
⎪⎭⇒

E =
F2
m

2ρ2
+

γ

γ − 1
kργ−1 − GM

r
= E(ρ, r) .

Then, since, E(ρ, r) = const. ⇒ dE = 0 and for a finite density gradient at
the critical point we require that:

dρ

dr
=

∂E
∂r

∣∣∣
ρ

∂E
∂ρ

∣∣∣
r

= finite =⇒ ∂E
∂r

∣∣∣∣
ρ

=
∂E
∂ρ

∣∣∣∣
r

= 0 . (14)

The first equation determines the location of the critical point and the second
the corresponding critical speed:

ε

ξ

Fig. 6. X-type critical point in the topology of the wind solutions
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R

M

Fig. 7. Topology of the Bernoulli integral. The physically accepted solution is
indicated with the thick line

⎧⎪⎪⎨
⎪⎪⎩
ρ ∂E
∂ρ

∣∣∣
r

= −V 2 + γkργ−1 = −V 2
cr + V 2

s = 0 ,

r ∂E
∂r

∣∣∣
ρ

= −2V 2
cr + GM

rcr = 0 ,

⎫⎪⎪⎬
⎪⎪⎭

⇒

⎧⎪⎨
⎪⎩
Vcr = Vs ,

rcr = GM
2V 2

s

,

where Vs denotes the sound speed and Vcr the speed at the critical point at
the distance rcr.

4 Rotating, Magnetized Equatorial Winds

The simplest model of a rotating and magnetized wind which was proposed
by Weber & Davis in 1967, [79] nicely explains the magnetic braking of stars.
From the formal point of view, this model also reveals the more complicated
topology of the solutions of an MHD outflow which now need to cross the var-
ious MHD critical points, instead of the single sonic critical point encountered
in Parker’s theory.

4.1 Basic Equations

In the Weber and Davis (WD) model we solve the MHD equations on the
equatorial plane θ = π/2 of the rotating star by using spherical coordinates
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Bϕ

Vϕ

B(r)
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Fig. 8. The Weber-Davis magnetized and rotating wind

(r, ϑ, ϕ) as depicted in Fig. 8. A drastic simplification results by ignoring the
meridional components along θ̂, and also the dependence of the variables on
the azimuthal angle ϕ. Thus, the five assumptions of the WD model of a
magnetocentrifugal wind are:

• Steady states, ∂t = 0.
• Axisymmetry around the z-axis, ∂ϕ = 0.
• Analysis of the problem on the equatorial plane, ϑ = π/2.
• Neglect the meridional components of the hydromagnetic field (V ,B)

which are assumed to only have radial and azimuthal components
depending only on the radial distance r,

V = V r(r) + V ϕ(r) ,

B = Br(r) + Bϕ(r) ,

• A polytropic relation between pressure and density, P = kργ .

Also, in the model the following physical quantities are involved:

• the Alfvén speed in the radial direction, VAr = Br(r)√
4πρ(r)

,

• the Alfvén number Mr for magnetized fluids, a quantity equivalent to the
Mach number for HD winds,

Mr =
Vr(r)
VAr(r)

≡M(r) ,

• the Alfvén radius r�, i.e. the radial distance in which the radial outflow
speed Vr(r) equals to the radial Alfvén speed VAr, M(r�) = 1,

• the Alfvén density ρ�, i.e. the plasma density at the Alfvén distance:
ρ(r�) = ρ�,
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• the radial speed V� at the Alfvén distance, V� = VAr(r�),
• the adimensional radial distance in units of the Alfvén radius , R = r

r� ,

• the escape speed at the Alfvén radius, Vesc(r�) =
√

2GM
r� .

From these quantities one may define the following adimensional constants,
by normalising the escape speed Vesc, the sound speed Vs and the rotational
speed at the Alfvén distance r�, Ωr�, with the Alfvén speed V∗ at the radius
r�, and finally the total energy per unit mass E in units of V 2∗ /2. Thus we
have:

• the adimensional escape speed, ν2 = V 2
esc

V 2
�

= 2GM
r�V

2
�

,

• the adimensional sound speed, s2 = 2γ
γ − 1

V 2
s (r�)
V 2
�

= 2γkργ−1
�

(γ − 1)V 2
�

,

• the adimensional rotational speed at the Alfvén radius, ω = Ωr�
V�

,

• the adimensional total energy per unit mass, ε = 2E
V 2
�

.

4.2 Azimuthal Components of the Hydromagnetic Field

In the following we briefly outline the steps leading to the expressions of
the azimuthal magnetic field and the flow. Since the hydromagnetic field is
assumed to only have radial and azimuthal components only, the induction
electric field is E = Eϑϑ. Then, from Faraday’s induction law

∇ × E =
ϕ̂

r

∂

∂r
(rEϑ) = 0 ,

we have,

− crEϑ = r(V × B) · ϑ̂ = r(VϕBr − VrBϕ) ≈ Ωr2Br = Ωr20Br(r0) , (15)

since at the base r0, where Vϕ = Ωr0 the radial speed Vr(r0) is negligible.
The azimuthal component of the momentum equation gives:

[ρ(V · ∇)V ] · ϕ̂ = [
(∇ × B) × B

4π
] · ϕ̂ =⇒ ∂

∂r
(rVϕ) =

Br
4πρVr

∂

∂r
(rBϕ)(16)

But the fluxes FB = r2Br and Fm = ρr2Vr are constants and so,

4πρr2Vr
r2Br

=
Fm
FB

≡ ΨA = const =⇒ rVϕ − rBϕ
ΨA

= L , (17)

where L is the specific total angular momentum of the plasma and the elec-
tromagnetic field due to the magnetic torque of the Lorentz force cFϕ = JϑBr
around the z-axis. Combining (16) and (17) we get:
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Vφ(r) =
L

r

M2 − Ω
L r

2

M2 − 1
,

Bφ(r)
ΨA

=
L

r

1 − Ω
L r

2

M2 − 1
. (18)

At the Alfvenic distance r = r∗, M = 1, and in order that the expressions are
finite we need to have Ωr2� = L. Finally, in terms of R≡ r/r∗ we have:

Vφ(R) =
Ωr�
R

M2 −R2

M2 − 1
,

Bφ(R)
ΨA

=
Ωr�
R

1 −R2

M2 − 1
. (19)

This completes the derivation of the azimuthal components of the hydromag-
netic speed in terms of the radial distance R and the Alfvén number M(R)
and also the two constants Ω and ΨA which determine the angular speed of
the roots of the fieldlines on the star or surrounding disk and the fixed ratio
of mass to magnetic fluxes.

4.3 The Generalized Bernoulli Integral

By substituting the above expressions of the azimuthal fields in the radial
component of the momentum equation we get,

d lnVr
d lnR

=
(V 2
r − V 2)

(
2V 2

s + V 2
φ − GM

r�R

)
+ 2VrVφVAVAφ

(V 2
r − V 2

sl)(V 2
r − V 2

f )
. (20)

Note the two critical points in this equation which correspond to the slow
Vslow and fast Vfast characteristic MHD wave speeds.

Integrating the above equation we obtain similarly to the Parker wind the
generalized energy integral (Bernoulli equation);

E =
1
2
V 2
r − GM

r
+ h︸ ︷︷ ︸

hydrodynamic

term (Parker)

+
1
2
V 2
φ − rBφΩ

ΨA︸ ︷︷ ︸
new magnetic -

rotational term

= const , h =
γ

γ − 1
kργ−1 . (21)

A plot of the Bernoulli integral is shown in the following Fig. 9 while Fig. 10
shows a typical solution.

The generalized Bernoulli integral can be written as:

E =
1
2
V 2 + h− GM

r
− rBφΩ

ΨA
=

1
2
V 2
o + ho − GM

ro︸ ︷︷ ︸
Eo

− roB
◦
φΩ

ΨA︸ ︷︷ ︸
≈ ΩL

≈ Eo +ΩL (22)

where Eo is the specific energy of the thermally driven Parker wind and ΩL
is the Poynting energy of the magnetic rotator. Depending on which of these
two terms dominates we have two possibilities:

1. Eo � ΩL: Slow magnetic rotator, SMR. In this case we have a ther-
mally driven Parker wind

2. Eo 	 ΩL: Fast magnetic rotator, FMR. In this case we have a mag-
netorotationally driven wind.
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Fig. 9. 3-D plot of the Bernoulli integral ε = 2E/V 2
� as a function of the dimensionless

velocity u = Vr/V∗ and radius R = r/r∗

4.4 The Michel Characteristic Speed

Since the enthalpic and gravitational terms become negligible at large dis-
tances, the Bernoulli equation for a magnetically dominated wind becomes
asymptotically,

− ΩrBφ
ΨA

∣∣∣∣
r→∞
= −Ω2r2�

1 −R2

M2 − 1
� Ω2r2�

R2

M2
=
Ω2r2�
u∞

, (23)

E ≈ 1
2
V 2
∞ − ΩrBφ

ΨA

∣∣∣∣
∞

, (24)

where u = Vr/V∗ = M2/R2. In terms of the dimensionless rotational speed ω
at the Alfvenic distance, ω = Ωr�/V� we have at these large distances,

ε(u) =
2E(u)
V 2∗

= u2 +
2ω2

u
. (25)
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Fig. 10. A typical solution for the parameters ν = 1.401256, s = 2.84215, ω =
1.016858, γ = 1.133537, corresponding to a slow magnetic rotator. With thick solid
lines are indicated the solutions which cross the critical points, slow, Alfvén and
fast. The solutions are shown in the plane M −R in (a) and the plane u−R in (b),
with u = Vr/V∗ = M2/R2
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The double root of this equation - the minimum of the curve ε(u) ≡ f(u) see
Fig. 12 - is ε(u0) = ε0 at uo = ω2/3:

u0 =
VM
V�

= ω2/3 ⇒ V 3
M = V 3

�

(
Ω2r2�
V 2
�

)
=
Ω2r2�
V�

B2
�

4πρ�
,

FB = Br,�r
2
� , Fm = 4πρ�V�r2� , VM =

(
Ω2F2

B

Fm

)1/3

. (26)

The speed VM is a characteristic speed introduced by Michel [42], and
plays a central role in magnetic winds. If Vr 	 VM , magnetic effects can be
ignored while when Vr � VM they dominate.

For our Sun today,

VM =
(
Ω2F2

B

Fm

)1/3

� 60 − 90 km/sec 	 VParker ≈ 600 km/sec . (27)

Fig. 11. Upper left: Radial and azimuthal speeds as functions of the dimensionless
distance from a WD solution with parameters appropriate to a slow magnetic rotator
like our Sun. Lower left: Radial accelerations in the above WD solution: total,
magnetic, pressure gradient, centrifugal. Upper/lower right: the same with the
left panels but with parameters appropriate to a fast magnetic rotator like a young
star aging 50 × 106 years
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Thus, our Sun is a slow magnetic rotator (SMR), although in the past it was
a fast magnetic rotator (FMR). Solutions corresponding to the two extreme
cases of a SMR and a FMR are shown in Fig. 11.

4.5 Fast Magnetic Rotators

In the case of fast magnetic rotators, the total specific energy can be calculated
asymptotically,

E ≈ ΩL = Ω2r2� =
1
2
V 2
∞ − ΩrBφ

ΨA

∣∣∣∣
∞

, (28)

In terms of the dimensionless rotational speed ω at the Alfvenic distance,
ω = (Ωr�)/V� and the dimensionless radial speed u(R) = V (r)/V∗, the
dimensionless Bernoulli integral can be written:

2ω2 = (u∞)2 +
2ω2

u∞
. (29)

The minimum value of [u2∞ + 2ω2/u∞] is equal to 3ω4/3 and corresponds to
u∞ = ω2/3. Then, we have two solutions u∞1 , u∞2 only when

2ω2 ≥ 3ω4/3

VM = V�ω
2/3

⎫⎬
⎭⇒ VM ≥ 3

2
V� , or , ω ≥

(
3
2

)3/2

. (30)

For a given value of E , one of these solutions is superfast (u∞2 ) and the other
(u∞1 ) subfast. If the value of E is such that VM = (3/2)V�, or, ω = (3/2)3/2,
the fast critical point is at infinity. For the superfast solution:

EPoynting
Ekinetic

= 2
(
ω2/3

u

)3

< 2 , (31)

u_1 u_o u_2
u

ε

f (u)

Fig. 12. Plot of the function f(u) = u2 + 2ω2

u
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because for these solutions u > ω2/3. It follows that Epoynt < 2
3E , Ekin > 1

3E .
Consider then a Weber/Davis magnetized wind starting with all its avail-

able at the base total energy in the Poynting form. Then, if asymptotically
the outflow speed equals the fast speed, 1/3 of this available at the base total
energy is transformed to kinetic energy of the outflowing plasma, while the
other 2/3 remains as Poynting energy.

4.6 Superfast Solutions at Large Distances and Causality

The dispersion relation for the fast Alfvén speed is:

V 4
f − V 2

f (V 2
s + V 2

A) + V 2
ApV

2
s = 0 , (32)

where VA is the total Alfvén speed, VAp is the poloidal component of the
Alfvén speed and Vs is the sound speed,

V 2
A =

B2
r +B2

φ

4πρ
, V 2

Ap =
B2
p

4πρ
=

B2
r

4πρ
. (33)

As R → ∞, some solutions have ρ∞ → 0 and Vs = γργ−1 → 0. Thus,
asymptotically as Vs → 0 in the above dispersion relation, the fast Alfvén
speed becomes:

V 2
f = V 2

A =
B2
r +B2

φ

4πρ
. (34)

At the same time, from magnetic flux conservation we have

B∞
r =

B�
R2

→ 0 , (35)

while the azimuthal component Bφ dominates in all these large distances:

Bφ =
Ωr�ΨA
R

1 −R2

M2 − 1
� −Ωr�ΨAR

M2
. (36)

Hence,

V 2
f � B2

φ

4πρ
=

Ω2r2�
M2/R2 =

Ω2r2�
V 2
�

V 2
�

u
=
ω2V 2

�

u
. (37)

Finally, the fast Alfvén number takes the form:

M2
f =

V 2
r

V 2
f

=
V 2
r u

ω2V 2
�

=
u3

ω2
=
( u

ω2/3

)3

. (38)

Evidently for the solution, u∞2 > ω2/3 it holds Mf > 1, while for the solution
u∞1 < ω2/3 we have Mf < 1.

In conclusion, only when the flow speed at infinity is larger than the Michel
speed it is possible to have superfast speeds at infinity. The existence of this
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type of superfast solutions is required from the causality principle as well, since
perturbations at infinity cannot (and should not) influence the conditions
at the base, when the flow speed exceeds the fast speed. The situation is
analogous to the case wherein the terminal speed of a Parker HD wind is
supersonic and perturbations at infinity cannot influence the conditions at
the base of the wind, since the flow speed exceeds the sound speed.

4.7 Angular Momentum Loss via Magnetized Winds

A direct application of the above theory is on the observed spin down of stars
in young clusters, wherein as the stars age their rotational speed statistically
declines, Fig. 13.

Fig. 13. Evolution of stellar rotation as evidenced from a synthetic distribution of
Vφsini in stellar clusters of various ages [12]
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Consider then for a moment the angular momentum loss from a shell of
the wind of radius R rotating with angular velocity Ω. Since dJsh = dIshΩ,
the angular momentum loss rate is

dIsh =
2
3
(dM)R2 =⇒ dJsh =

2
3
R2Ω dM =⇒ dJsh

dt
=

2
3
R2Ω Ṁ . (39)

Application to the Sun: Let τ◦J the angular momentum loss time scale with-
out a magnetic field and τMJ the angular momentum loss time scale with a
magnetic field.

1. Angular momentum loss time scale for a young sun without a magnetized
wind:

τoJ � − J

dJ
dt

=
IΩ

(2/3)ΩR2�Ṁ
=

3kM
2Ṁ

, I = kMR2
� , (40)

for Ṁ � 10−14M� yr−1, k � 6× 10−2, since the sun has most of its mass
concentrated at its center. Then,

τoJ � 600 × 1010 yrs � τ� ≈ 1010 yrs , (41)

where τ� is the solar age. Thus the removal of angular momentum by a
nonmagnetized wind is inefficient.

2. Angular momentum loss time scale with a magnetic field:

τMJ � − J

dJ
dt

=
IΩ

(2/3)Ωr2AṀ
=

3kMR2�Ω

2λ2R2�Ṁ
=

τoJ
λ2

, (42)

with rA = λR�, λ � (10 − 50)R�. In this case,

τJ � (0.24 − 6) × 1010 yrs ∼ τ� ≈ 1010 yrs . (43)

Thus, the removal of angular momentum by a magnetized wind is effi-
cient. Figure 13 shows the evolution of stellar rotation as evidenced from
synthetic distribution of V sini in stellar clusters of various ages. Note that a
considerable percentage of stars in young clusters aging several million years
rotate rapidly because of contraction and angular momentum conservation.
On the other hand, in old clusters aging hundreds of millions of years, most
stars have slowed down because of magnetic braking by WD-type magnetized
winds.

4.8 Skumanich’s Law

Observations of coronal X-ray luminosity give that the X-ray luminosity is
proportional to the square of the angular velocity, LX ∝ Ω2. On the other
hand, from the theory of magnetic coronal heating, the X-ray luminosity is
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proportional to the square of the magnetic field, LX ∝ B2. Then, the stellar
magnetic field B0 is proportional to the rotation rate Ω, Bo = χΩ, in accor-
dance and with the Dynamo mechanism. With an angular momentum loss via
a magnetized wind we have:

− dJ

dt
=

2
3
Ωr2AṀ , (44)

For a radial outflow Ṁ = 4πρAVAr2A , with V 2
A = B2

A/4πρA, r4AB
2
A = r40B

2
0 ,

− dJ

dt
=

2
3
Ωr4A
VA

4πρAV 2
A =

2
3
Ωr4AB

2
A

VA
=

2
3
ΩB2

or
4
o

VA
=

2
3
χ2r4o
VA︸ ︷︷ ︸
κ

Ω3 = κΩ3 .(45)

But,

dJ

dt
= IΩ̇ =⇒ −Ω̇ = κΩ3 =⇒ Ω(t) =

Ωo√
1 + 2κΩ2

ot
. (46)

For long time intervals t this simplifies to:

Ω(t) =
1√
2κ

t−0.5 . (47)

which is the verified observationally Skumanich’s law [62].

5 Simple Physics in MHD Disk-winds

MHD disk winds offer a nice opportunity to illustrate the basic physics of
outflow acceleration, a criterium for jet launching together with a simplified
picture for the angular momentum removal from the disk by a jet.

5.1 Minimum Fieldline Inclination for Jet Acceleration

In the following we briefly outline a simple geometrical criterium for the initial
minimum fieldline inclination on the poloidal plane for outflow acceleration
in disk winds (Fig. 14). We consider on the disk plane (z=0) a unit of plasma
volume. At the inner parts of the accretion disk, the Keplerian rotation has
kinetic energy greater than the corresponding magnetic energy. On the other
hand, on the poloidal meridional plane r− z, the magnetic field is sufficiently
strong such as it guides the charged particles in Larmor motions around the
magnetic field lines with their guiding center sliding along these lines,

1
2
ρV 2

φ >>
B2
p

8π
>>

1
2
ρV 2

p , (48)
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X

Fig. 14. Illustration for the calculation of the minimum inclination angle of the
magnetic fieldlines at the level of the disk for magnetocentrifugal jet acceleration.
Fg denotes the central gravitational force while FC the centrifugal force

i.e. close to the disk, the Keplerian rotational speed is much greater of the
Alfvén speed which in turn is much higher than the initial poloidal speed. The
basic mechanical analogue is beads (the charged particles) around rigid wires
(the poloidal magnetic field lines) while these wires are rotating around the
symmetry z-axis with the Keplerian velocity,

ΩK =
(
GM

"3
o

)1/2

.

The centrifugal force on the rotating charged particles derives from a
corresponding centrifugal potential such that the total potential that the par-
ticles see is:

Φ(x, z) = −GM

"o

{
1
2

(
"o + x

"o

)2

+
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[("o + x)2 + z2]1/2
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+ . . .

}
=
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"o

{
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2

+
3x2 − z2

2"2
o

}
, (49)

where we write the cylindrical distance as " = "0 + x and consider plasma
particles close to the disk such that for x << "0, z << "0 we may employ a
Taylor expansion.

Denote by s the arc length on the poloidal fieldline measured from the base
of the outflow at the disk level z = 0. Also, denote by ψ the angle this poloidal
fieldline makes with the disk level, z = s sinψ ;x = s cosψ. Substituting we get
the total potential as a function of s and ψ:
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Φ(s, ψ) = −GM

"o

{
3
2

+ s2
3 cos2 ψ − sin2 ψ

2"2
o

}
. (50)

The total force Fs acting on the plasma particles at the distance s at a given
angle ψ is:

Fs = −∂Φ

∂s

∣∣∣∣∣
ψ

=
GMs

"3
o

{
3 cos2 ψ − sin2 ψ

}
. (51)

Therefore, when Fs > 0 we have acceleration and plasma outflow from the
disk,

Fs > 0 =⇒ 3 cos2 ψ > sin2 ψ =⇒ tan2 ψ <
1
3

=⇒ ψ < 60◦ . (52)

It thus follows, that the fieldlines need to be inclined to the disk midplane
by an angle less than 60 degrees for an outwards plasma acceleration. This is
usually referred to as the “bead on a rotating wire” analogy.

5.2 Basics of Jet Acceleration

Figure 15 briefly illustrates how an outflow is magnetocentrifugally accelerated
up to the Alfvén distance, after which the azimuthal magnetic field eventually
collimates the outflow via the built up magnetic hoop stress. The process of
acceleration/collimation can be analysed in three steps. First, on the disk
level the magnetic field is carried around the central object by the rapid

Basics of jet acceleration and collimation

On the disk, z=0, the rotational kinetic energy
exceeds the magnetic energy     Keplerian rotation
of the B-field line rooted at r0.

Up to the Alfven distance, the B-field is strong
enough     forces the plasma to follow the
Keplerian rotation of the roots of the magnetic
fieldline, In particular, when the inclination angle
is less than 60°, we have the “bead on a rotating
wire” magnetocentrifugal acceleration.

After the Alfven distance, the poloidal B-field
energy is weaker than the poloidal kinetic motion
     the B-field follows the plasma. The plasma
inertia leaves it behind the rotating B-line
creation of strong Bϕ

The created strong Bϕ collmates the magnetic field
lines towards the z-axis and forms the jet.
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Fig. 15. Illustration of the jet acceleration in radially self-similar outflows
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azimuthal rotation. Second, just above the disk-plane, the magnetic energy of
the poloidal magnetic field exceeds the kinetic energy of the poloidal outflow
and thus the plasma moves along the magnetic field on the poloidal plane, with
the magnetic field enforcing corotation (as a “bead on a rigid axial wire”).
And third, after the Alfvén distance, the plasma has gained enough energy
to move independently of the magnetic field (“as a rapidly moving metallic
bead moves independently of its thin axial plastic filament”). As a result, the
rotating rigidly magnetic field winds up, strong azimuthal field is created and
the magnetic hoop stress finally collimates the outflow. The Lorenz force can
be written,

J × B

4π
= −∇

(
B2

8π

)
+

(B · ∇)B
4π

= ∇Pm + Tm , (53)

where Pm is the magnetic pressure and Tm the magnetic tension. For an
axisymmetric azimuthal magnetic field Bφ, the magnetic tension is,

Tm =
(B · ∇)B

4π
= −B2

φ

4π
κn̂ = − B2

φ

4π"
n̂ ,

dφ̂

ds
= κn̂ . (54)

and it is directed towards n̂ which points to the center of curvature of the
circular line of radius ".

In other words, one may simulate the magnetic field up to the Alfvén
distance to a rigid wire and after to a thin plastic filament with the rotating
rigid wires enforcing the winding of the filaments further downstream.

5.3 Transfer of Disk Angular Momentum

In order that accretion on the central object finally occurs, some part of the
angular momentum of the rotating plasma in the inner parts of the disk has
to be removed. If the friction of any adjacent rotating plasma rings is suffi-
cient, i.e. if the viscosity coefficient is large enough, this angular momentum
is transferred to the external parts of the disk by the friction. However, in as-
trophysical disks the kinematic viscosity is rather low and thus it cannot play
such a role. Another possibility is the development of turbulence, for example
via the magnetorotational instability.

On the other hand, an efficient way to remove the excess disk angular
momentum is provided by a magnetized outflow. A Keplerian disk rotating
with angular frequency ΩK and accreting at a rate Ṁa carries an angular
momentum Ja. If this angular momentum is removed at a rate J̇a from a disk
radius "o, we have:

J̇a =
1
2
ΩK"

2
oṀa . (55)

On the other hand, a disk-wind outflowing at a rate Ṁw carries away angular
momentum Jw with a rate:
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J̇w = ΩK"
2
AṀw . (56)

If the disk-wind carries away a fraction f (0 < f < 1) of the angular momentum
of the accreting matter, J̇w = fJ̇a, then,

Ṁw

Ṁa

=
f

2
"2
o

"2
A

. (57)

With a magnetic lever arm "A ∼ (5 − 10)"o, the disk-wind needs then to
carry away only a few percent of the accreting mass rate. This is a rather
remarkable fact, in the sense that a small fraction of the outflowing gas can
take away most of the angular momentum of the disk allowing thus the disk
material to accrete onto the central condensation and form the young star.

Recent observations have shown signatures of jet rotation in the form of
transverse velocity shifts of the order of 10 km/sec detected in 6 microjets on
scales of z=50 AU, [1, 80]. In particular, out of 4 disks investigated, 2 rotate
in the same sense as their jets (DG Tau, CW Tau), 1 is undetermined (HH30)
and 1 opposite (RW Aur) [16]. It is interesting to note in passing that some
MHD disk-wind models do show such reversal of rotation, ([74], Fig. 5). Also,
by using disk wind theory these observations for the case of RW Aur are con-
sistent with the ratio Bϕ/Bp of the toroidal and poloidal components of the
magnetic field at the observed location (i.e. about 80–100 AU above the disk)
to be 3.8 ± 1.1 at 30 AU from the axis in the red lobe and –8.9 ± 2.7 at 20
AU from the axis in the blue lobe (assuming cylindrical coordinates centered
on the star), [80]. These observations suggest that the jet should be mag-
netically collimated, the toroidal component dominates and thus the angular
momentum may be removed magnetically from the disk via the jet [24].

6 Steady-state, Exact Self-similar MHD Solutions

As discussed in Sect. 2, magnetized outflows are described to first order by the
ideal MHD equations, i.e. Maxwell’s equations combined with the conservation
of mass, momentum, and energy. Assuming steady-state and axisymmetry,
several conserved quantities along the flow exist, [65]. If we label each poloidal
field line with the poloidal magnetic flux function A, they are the mass-to-
magnetic flux ratio,

A =
1
2π

∫
Bp · dS , ΨA(A) =

4πρVp
Bp

(58)

the field angular velocity Ω(A) and the specific total angular momentum L(A)

Ω(A) = (Vϕ/") − (Vp/")(Bϕ/Bp) , L(A) = "Vϕ −"Bϕ/ΨA , (59)

while the Alfvénic lever arm "a on each field line is, "a =
√
L(A)Ω(A), [65].

It is convenient to introduce two more dimensionless functions, the Alfvén
Mach number M and the cylindrical distance in units of "a,
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M =
Vp

Bp/
√

4πρ
, G =

"

"a
. (60)

All physical quantities can be expressed as functions of the magnetic flux
function A [i.e. "a(A), ΨA(A), Ω(A)] and the two variables (G ,M) (e.g.
see [65])

B =
dA

d"a
∇"

G
× ϕ̂

"
− "2

aΩΨA
"

1 −G2

1 −M2
ϕ̂ , (61)

V =
M2

ΨA
Bp +

"2
aΩ

"

G2 −M2

1 −M2
ϕ̂ . (62)

The functions G(r , θ) and M(r , θ) can be obtained by integrating the two
coupled components of the momentum equation on the poloidal plane. How-
ever, due to the complexity of these two partial differential equations (PDE)
and in order to proceed semi-analytically, we are forced to make further as-
sumptions. For example, if we are interested for a nonlinear separation of the
variables in the two PDE, we may employ the only known at present approach,
namely the method of self-similarity.

A physical phenomenon is called temporarily self-similar if it can be repro-
duced at any time via a self-similar mechanism from a previous temporal state.
The classical such example is a nuclear bomb explosion with the mushroom
typical shape.

Analogously, a physical phenomenon is called spatially self-similar if it can
be reproduced everywhere in space via a spatial self-similar mechanism. The
classical such example are the Russian matryoshkas. Also, the observed shapes
of astrophysical jets in the galactic and extragalactic scales, are suggestive of
such a symmetry in space. Technically, spatial self-similarity may be viewed
as a method of nonlinear separation of the variables in the set of the steady
MHD equations, providing us the opportunity to obtain analytically solutions.

In particular, in self-similarity it is assumed that both G and M are func-
tions of a single variable χ, [74]. If this is the case, the ratios (1−G2)/(1−M2),
(G2 −M2)/(1 −M2) appearing in (61) and (62) are functions of χ only, and
the components of the momentum equation become relatively simple expres-
sions of χ and "a. It is in principle possible to choose the functional form
of the integrals such that the variables (χ ,"a) decouple, in which case the
equations become ordinary differential (ODEs) with respect to χ. The only
remaining difficulty then is that the solution should cross various singular
points, corresponding to ratios 0

0 in the ODEs.
This unifying scheme contains two large families of exact MHD models,

which are systematically constructed in [74]:

1. For χ = θ we get the family of the radially self-similar models with conical
critical surfaces and with prototype the Blandford & Payne model, [4] [see
also [76] for the relativistic case]. Figure 16(a) illustrates the radial self-
similar character of the poloidal field lines, resulting from the assumption
" = "aG(θ).
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Fig. 16. An illustration of the two possibilities of self-similar field line structure.
Consider two arbitrary field lines (thick lines). In (a) is illustrated the case of radial
self-similarity, wherein the ratio �1/�2 for the intersection of any poloidal line with
a cone is the same for any value of θ. Specifically, if we write A(r, θ) = �xf(θ),
the ratio of the cylindrical distances �1 and �2 in which the direction θ=const.
intersects the two lines A = A1 and A = A2 is A1/A2 = (�1/�2)

x. Thus, if the
MHD problem is solved for one fieldline A = A1, i.e. the unknown function f(θ) is

calculated, from the distance �1 we may calculate �2, �2 = A2/A1
1/x�1 for given

values of A = A1 and A = A2. Thus, if we know one field line we may construct all
the others. In (b) it is illustrated the case of meridional self-similarity. By writing
A(r, θ) = �xf(r), a determination of the unknown function f(r) yields the ratio of
the cylindrical distances �1 and �2 in which the sphere r=const. intersects the two
lines A = A1 and A = A2. This ratio is the same for any spherical surface r =const.,
i.e. �2 = (A2/A1)

1/2�1. Thus, again if we know one field line we may construct all
the others

2. For χ = r we get the family of the meridionally self-similar models with
spherical critical surfaces and with prototype the Sauty & Tsinganos
model [55](henceforth ST94 model; see also [58]). This family also includes
the classical Parker [50] description of a stellar wind, as its simplest mem-
ber; it also contains the simple prescribed field line model of Tsinganos &
Trussoni, [67]. Figure 16(b) illustrates the meaning of the meridional self-
similar assumption " = "aG(r).

In Table 1 we summarize all possible classes of the meridionally self-similar
family of solutions (for details see [74]). Instead of using the three functions
of the dimensionless poloidal flux function α, (A , ΨA, Ω), we found it more
convenient to use the three dimensionless functions g1(α), g2(α) and g3(α),

g1 (α) =
∫

A′2dα , g2 (α) =
r2�
B2
�

∫
Ω2Ψ2

Adα , g3 (α) =
Ψ2
A

4πρ�
. (63)

Similarly, in the corresponding Table 2 which summarizes all possible classes
of the radially self-similar family of solutions, we found it more convenient to
use the three dimensionless functions q1(α) , q2(α) , q3(α) (for details see [74]),
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Table 1. Meridionally Self-similar Models

Case g1(α) g2(α) g3(α)

(1) α λ2α 1 + δα
(2) α ξα + μαε/ε 1 + δα + μδ0α

ε

(3) α ξα + μα lnα 1 + δα + μδ0α ln α

(4) α0e
α

α0 λe
α

α0 1 + δαe
α

α0 + μ
(
e

α
α0 − 1

)
(5)

α0

ε
| α

α0
− 1 |ε ξ | α

α0
− 1 |ε 1 + δ | α

α0
− 1 |ε +μ | α

α0
− 1 |ε−1 −δ − μ

(6) −α0 ln | α

α0
− 1 | ξ ln | α

α0
− 1 | 1 + δ ln | α

α0
− 1 | + μ

α

α0 (α − α0)

(7)
α

1 − α0
μ ln

α

α0
+ ξα 1 + δ (α − α0) + μδ0 ln

α

α0

(8)
α0

ε (1 − α0)

(
α

α0

)ε

λ1α
ε + λ2α

ε−1 1 + δ1 (αε − αε
0) + δ2

(
αε−1 − αε−1

0

)

(9)
α0

1 − α0
ln

α

α0
λ1 ln

α

α0
+ λ2

α
1 + δ1 ln

α

α0
+ δ2

(
1

α
− 1

α0

)

Table 2. Radially Self-similar Models

Case q1(α) q2(α) q3(α)

(1)
E1

F − 2
αF−2 D1

F−2
αF−2 C1

F − 2
αF−2

(2) E1 ln α D1 lnα C1 ln α
(3) E1α

x1 + E2α
x2 D1α

x1 + D2α
x2 C1α

x1 + C2α
x2

(4) E1 ln α + E2α
x D1 lnα + D2α

x C1 ln α + C2α
x

(5) E1 (ln α)2 + E2 ln α D1 (ln α)2 + D2 lnα C1 (ln α)2 + C2 ln α
(6) E1α

x ln α + E2α
x D1α

x ln α + D2α
x C1α

x lnα + C2α
x

q1 (α) =
∫ A′2

α
dα , q2 (α) =

"2
o

B2
o

∫
Ω2Ψ2

Adα , q3 (α) =
GM
B2
o"o

∫
Ψ2
A

α
3
2
dα (64)

It is worth to note that in the class of meridionally self-similar solutions
analyzed in [55] an interesting parametric energetic criterion emerges which
characterizes the asymptotic shape of the streamlines. In terms of this pa-
rameter, we may either have an Efficient Magnetic Rotator magnetic rotator,
efficient (EMR) to magnetically collimate the outflow into a jet, or, an Inef-
ficient Magnetic Rotator (IMR). This EMR/IMR criterion is an extension to
2-D of the FMR/SMR criterion in the 1-D Weber & Davis model. For more
details and application of this criterion to the various astrophysical outflows,
the interested reader is referred to the Lecture of C. Sauty in this volume.

6.1 Critical Points, Separatrices and Causality

An interesting feature of axisymmetric MHD wind-type solutions is the ap-
pearance of two X-type critical points within the flow domain, in addition
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to the Alfvén critical point. In general, at the critical points the bulk flow
speed equals to one of the characteristic speeds in the problem. Hence, it is of
physical interest to associate the flow speeds at these X-type critical points to a
characteristic speed for MHD wave propagation. In that connection, first note
that these semi-analytical solutions possess the symmetries of self-similarity
and axial symmetry. Thus, in spherical coordinates (r, θ, ϕ), the self-similarity
direction ŝ can be ŝ ≡ θ̂, or, ŝ ≡ r̂ and the axisymmetry direction is ϕ̂. There-
fore, a wave that preserves those two symmetries should propagate along
the ϕ̂ × ŝ ‖ χ̂-direction in the meridional plane. Besides the incompressible
Alfvén mode propagating along the magnetic field (B) with velocity VA, the
compressible slow/fast MHD modes propagate in the direction χ̂ with phase
speeds Vχ ≡ Vslow,χ, or, Vχ ≡ Vfast,χ which satisfy the quartic

V 4
χ − V 2

χ (V 2
A + C2

s ) + C2
sV

2
A,χ = 0 . (65)

Nature of PDE and Correct Boundary Conditions

1.  Elliptic PDE’s :
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2.  Hyperbolic PDE’s :

3.  Mixed Elliptic/Hyperbolic PDE’s :

Elliptic in domains Ei, hyperbolic in domains Hi, i=1,2,...

S
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S
B.C.’s on separatrices SS′ in hyperbolic domains Hi .

But, these separatrices SS′ in domains Hi are not known a priori
but should be constructed simultaneously with solution.
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Fig. 17. Illustration of the nature of the three cases of elliptic, hyperbolic and mixed-
type partial differential equations and the corresponding appropriate boundary
conditions
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SMSSMSS
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Fig. 18. Slopes of the two families of characteristics for a meridionally self-similar
solution in each of the two hyperbolic regimes of the problem from Sauty et al.
(2004). In the left figure the slow magnetoacoustic separatrix surface (SMSS) is at
R = r/rα=0.751 just before the slow magnetoacoustic surface (SMS). In the right
figure the fast magnetoacoustic separatrix surface (FMSS) is at R = 4158 above
the fast magnetoacoustic surface (FMS) at about R = 3000. Arrows indicate the
direction of MHD signal propagation while two Mach cones above and below the
FMSS are also shown

Hence, when the above equation is satisfied the governing equations have
X-type singularities and Vχ = V · χ̂.

On the other hand, it is well known that in the MHD flow system there ex-
ist two hyperbolic regimes wherein characteristics exist: the inner hyperbolic
regime which is bounded by the cusp and the slow magnetosonic surfaces and
the outer hyperbolic regime extending downstream of the fast magnetosonic
point, Fig. 17. Within each of those two hyperbolic regimes, there exists one
limiting characteristic or separatrix surface: the slow magneto-acoustic separa-
trix surface (SMSS) inside the inner hyperbolic regime and the fast magneto-
acoustic separatrix surface (FMSS) inside the outer hyperbolic regime, [6, 68].
The true critical points are found precisely on these two separatrices. Further-
more, the FMSS plays the role of the MHD signal horizon of the problem in
the sense that if the poloidal outflow speed exceeds the corresponding speed
at the FMSS, then no perturbation can affect the solution upstream of the
FMSS. In other words, setting the boundary conditions at the FMSS is a
proxy of setting the correct boundary conditions at infinity. As an example,
in Fig. 18 corresponding to a meridionally self-similar case analysed in [58], the
SMSS is at R = 0.751 while the FMSS is located at R = 4150. An analogous
situation appears in radially self-similar cases with two critical transitions at
the SMSS (Mms = 1) and FMSS (Mmf = 1)]. Such an example is shown in
Fig. 19, [75].



150 K. Tsinganos

0.0 2.0 4.0 6.0 8.0 10.0
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

Mf
=1

M
m

f
=

1

8.0
equator

5.0

15.0

p
o

la
r 

a
x
is

Ms=1

Mms=1

Mc=1

Fig. 19. The two families of characteristics in the two hyperbolic regimes of a radi-
ally self-similar solution, [75]. The slow magnetoacoustic separatrix surface (SMSS)
is at θ ≈ 72◦ (indicated by Mms = 1) and lies between the cusp surface (indicated
by Mc = 1) and the slow surface (indicated by Ms = 1), the Alfvén surface is at
θ = 60◦, the fast surface is indicated by Mf = 1 and the fast magnetoacoustic
separatrix surface (FMSS) is at θ ≈ 7◦ and is indicated by Mmf = 1

7 Numerical Simulation of Jet Formation

An investigation of the problem of the collimation of a MHD outflow can be
also obtained through a numerical simulation of the time-dependent MHD
equations. In one approach we have employed, the simulation can be done in
two steps. First, a steady state solution in the nearest zone which contains
the relevant MHD critical surfaces and the governing PDE are of mixed el-
liptic/hyperbolic type is obtained by using a relaxation method [10, 70]. In
the second step, the solution in the far zone can be obtained by extending
to large distances the solution obtained in the nearest zone. This ability to
extend the inner zone solution is based on the fact that the outflow in the far
zone is already superfast magnetosonic. Therefore, the problem can be treated
as an initial value Cauchy-type problem with the initial values taken from the
solution of the problem in the nearest zone. The advantage of this method is
that large lengths of the jet can be modelled. A second method employs direct
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time-dependent numerical simulation from the base of the outflow, but in this
way inevitably a smaller length of the jet is modelled (cf. [18, 36, 47, 72, 81]).

7.1 Why is a Magnetized and Rotating Outflow Collimated?

To illustrate in simple terms the effects of rotation and magnetic fields
in the outflow of a plasma from a central gravitating object, consider a
monopole-type magnetic field, Br = Bo/R

2, where Bo is the magnetic field at
the base R = r/ro = 1. Assume that the plasma flows with a constant speed Vo
along these radial magnetic field lines. The Alfvén number of this outflow is,

M2(R) =
V 2

0

V 2
A

= 4πρ
V 2

0

B2
0

R4 = 4πρa
V 2

0

B2
0

R2

R2
a

, (66)

where from mass conservation ρ = ρa(R2
a/R

2). Since at the Alfvén radial
distance Ra : M = 1, 4πρaV 2

0 = B2
0 we have finally,

M =
R

Ra
. (67)

Let us assume that the base of the outflow rotates with an angular velocity Ω.
From the steady MHD equations the induced azimuthal magnetic field Bϕ is

Bϕ
Br

= − Ω"2
a

"(Br/ΨA)
"2/"2

a − 1
M2 − 1

, (68)

where ΨA is the mass flux per unit of magnetic flux. Let us assume for the
moment that the ouflow remains radial after the rotation starts. Then, " =
R sin θ such that M = "/"a and for distances much larger than the Alfvenic
cylindrical distance, " � "a, R � Ra, M2 ≈ "2/"2

a, it follows that

Bϕ
Br

≈ −Ω"2
a

"

ΨA
Br

= −Ω"2
a

"

Ψ2
A

4πρ
4πρ
ΨABr

= −Ω"2
a

"

Ψ2
A

4πρ
1
V0

(69)

But,
Ψ2
A

4πρ
=

4πρV 2
0

B2
r

= M2 ≈ "2

"2
a

, (70)

and thus,
Bϕ
Br

≈ −Ω

V0
" . (71)

i.e. the azimuthal magnetic field grows with the cylindrical distance " in
relation to the poloidal magnetic field Br. Thus, although at the rotation axis
the magnetic tension is negligible, the azimuthal magnetic field grows with
distance from the axis of rotation and eventually it will dominate over the
poloidal magnetic field Bp. The magnetic pressure and tension then exert a net
force towards the axis of rotation and one may wonder for what might balance
this inwards force. The outward inertial (centrifugal) force ρV 2

ϕ/" is negligible
since the azimuthal flow speed is negligible in the same approximation,
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Vϕ =
Ω"2

a

"

[
1 − "2/"2

a − 1
M2 − 1

]
≈ 0 . (72)

The last available means to balance the inwards hoop stress would be some
suitable pressure gradient. However, the magnetic pressure drops with the
cylindrical distance " like 1/"2 and is negligible. The thermal gas pressure
on the other hand, should drop like 1/"3 in an atmosphere where V = Vo

(ρ ∼ "−2) in order that the thermal pressure gradient balances gravity. It
follows that the unavoidable result is that magnetic tension will bend the
poloidal magnetic field lines towards the axis, forming a cylindrical core. Such
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Fig. 20. In the top panel the poloidal magnetic field lines of the rotating outflow
are plotted in the far zone and for intervals of equal magnetic flux ΔΦ = 10−2 for
a total normalized flux Φ = 1. For comparison, the original (t=0) nonrotating and
uncollimated initial monopole magnetosphere is shown in the bottom panel
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Fig. 21. Intermediate state, wherein after the beginning of rotation of the base
of the outflow, the magnetic field lines focus towards the axis of rotation, by the
Lorentz j ×B force. An MHD shock wave propagates downstream the information
of the rotation and collimates at large distances the outflow

a dramatic formation of an inner jet by magnetic self-collimation may be
seen in Fig. 20(a) after we start rotating the initial radial magnetosphere of
Fig. 20(b): This magnetic confinement is also clearly seen in Fig. 21. In Fig. 22
we rediscover the result of the steady MHD modelling that a fast magnetic
rotator (in this case a YSO rotating 10 times faster than the Sun) produces
a tightly collimated jet while the solar wind does not show any significant
collimation.

7.2 A Two-component Model
for Jets from the System of a Central Source and a Disk

A serious limitation however of the previous simulations of magnetic collima-
tion is that only a tiny fraction of order ∼ 1% of the mass and magnetic flux of
the originally radial wind ends up collimated inside the jet [10]. Similarly, in
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Fig. 22. Left panels: Shape of poloidal magnetic field lines in the far zone of an
assumed isotropic solar wind. In the upper panel the poloidal field lines are plotted
in a linear scale, while in the lower panel in a logarithmic scale which magnifies
their slight bending towards the axis. As it may be seen, collimation is negligible.
Right panels: Same as in the left panels but for a wind from a star rotating 10
times faster than the Sun. Note the significant collimation in this case

analytical models if the source of the wind is a stellar surface and the disk does
not feed the outflow with mass and magnetic flux, very low wind- and jet-mass
loss rates (Ṁwind, Ṁj) are obtained. However, in outflows associated with
YSO current estimates place Ṁjet in the limits Ṁjet ∼ 10−6 − 10−8M�/yr
[51]. And, the inferred from observations mass loss rates of bipolar outflows
indicate wind mass loss rates also in the range of Ṁwind ∼ 10−6−10−8M�/yr,
depending largely on the luminosity of the YSO’s. Therefore, the mass loss
rate in the jet has to be a large fraction of the mass loss rate in the surrounding
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wind. The idea that the source of the jet rotates rather slowly may be
quite reasonable, at least in relation to YSO’s. It is evident that a protostar
should rotate more slowly than the inner edges of its Keplerian accretion
disk and observations indeed confirm this prediction [1]. We do not intend to
argue here that the matter in the jet is ejected from the protostar. The close
disk-jet connection [29] shows that the matter in the jet is supplied by the
accretion disk. But it is reasonable to assume that this matter penetrates in
the magnetic field of the central star, partially falls down on the surface of the
star and partially is ejected outwards, [21, 61]. In this case only the magnetic
field of the jet is connected with the central star. Schematically this picture of
the outflow is presented in Fig. 23. According to this scheme the disk not only
supplies the plasma of the jet, but also it produces the magnetized wind which
collimates the outflow from the central source into a jet. In Fig. 24 is shown
the asymptotic state wherein an inner radially expanding wind is forced to

disk disk

Central source wind

Central source wind

Disk wind

Disk wind Disk wind

Disk wind

Fig. 23. A theoretician’s illustration of the two-component model. A central source
emits an initially roughly radially expanding at the base outflow. This stellar wind
is self-collimated if the protostar is an EMR. If the protostar is an IMR, the stellar
wind is assisted to collimate by the disk wind from the rapidly rotating inner edges
of the surrounding accretion disk which is easily self-collimated. Arrows indicate the
magnetic field. Typical dimensions for the system of a YSO are : protostellar radius,
R∗ = 3R�, disk inner radius (magnetospheric cavity) �i = 0.1AU , jet emitting
part of the disk, 2.5 AU, disk outer radius �e = 100AU . The jet carries most of the
angular momentum of the accreting gas which then falls on the protostar along the
paths of the magnetic field in the magnetospheric cavity
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Fig. 24. The result of the simulation for the configuration shown in the previous Fig.
(23), [11]. When the disk starts rotating its disk wind collimates forcing the inner
wind to collimation too. A byproduct of the collision of the two outflow components
is the formation of a shock at the interface of the central wind and the surrounding
disk-wind

collimate by the surrounding disk wind. A shock wave is formed at the inter-
face of the two components of the outflow, as it may be seen in Fig. 24, [11].

8 Summary

The purpose of this review lecture was to outline the unity of astrophysi-
cal MHD outflows, from the Parker classical nonrotating and unmagnetized
thermal wind to the 1-D magnetized and rotating Weber & Davis equatorial
outflow and finally to the exact 2-D MHD solutions describing winds and
jets associated with YSO’s. We highlighted some simple physical results of
the theory of MHD outflows, for example, the minimum inclination of the
fieldlines for plasma acceleration, the mathematical theory of characteristics
and their relation with causality and correct definition of the boundary con-
ditions. The method of nonlinear separation of the variables of the governing
MHD equations via the self-similarity assumption has been shown to unify
all existing analytical solutions for astrophysical outflows, such as the Parker
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purely thermally driven wind, the thermally or magnetically driven stellar
winds which can be thermally or magnetically confined, and finally the purely
magnetically driven and magnetically confined disk-winds, [74]. Numerical
simulations have shown to reproduce results of the analytical solutions for
magnetic self-collimation and a generalization of the fast/slow magnetic ro-
tators theory of the Weber & Davis 1-D modeling to the efficient/inefficient
magnetic rotators theory via the existense of an energetic criterion for col-
limation, [55]. With this parameter, one may understand the appearance of
astrophysical outflows in winds and jets which was shown in the first figure
of this article, Fig. (1) Finally, we have concluded that the various classes
of observed YSO outflows may be understood as a combination of a stellar
wind and a disk-wind. Analytical theory provides no room for any other pos-
sibility. The precise contribution of each of these two components depends on
the stage of evolution of the YSO, with disk-winds dominating in the early
phases of star formation and the stellar component left alone in the last ZAMS
stage of the star, in the form of the familiar solar/stellar wind, when the disk
and its wind have both dispersed. More classes of exact solutions can be
examined to test this general theory, together with numerical simulations of
MHD outflows, a task that still remains to be pursued.
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1 Introduction

The long lasting lack of understanding of star formation is mainly due to the
fact that the process has never been directly observed. Indeed, stars begin
their lives deep inside dense and cold clouds of molecular gas and dust which
hinder optical light from escaping [11]. Fortunately, advances in observational
technology over the last quarter century opened the infrared and millimeter-
wave windows to astronomical investigation. However, it only enabled obser-
vations of indirect phenomena accompanying the star formation process, such
as flows and jets, rather than direct observation of the young stellar objects
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themselves. Hence, is it possible to infer the process of star formation from
those flows?

In spite of this difficulty, astronomers were expecting to see the signal
of inflowing gas, since, at this stage, the basic energy source is probably
gravity. Indeed, matter in the native molecular cloud starts to collapse un-
der the action of gravity and forms a central core that will eventually be-
come a star [2]. Instead, observations have shown that during this accretion
phase, part of the gas is rapidly moving away from the central core, at tens
of kilometers per second. Usually, two giant lobes of molecules are observed
and move in diametrically opposite directions on either side of the proto-
star [3]. Rather strikingly, their masses are similar to, or even more massive,
than that of the protostar itself [4]. Astronomers were, then, facing a para-
dox: How is a star simultaneously a source of both powerful ejections and
infall, and how does a star grow by losing mass? The resolution of such a
paradox must be that outflows are driven by infall and accretion [16], as we
will see.

Another problem still remains unsolved in the field of star formation. While
massive stars are fundamental in the evolution of galaxies since they produce
the heavy elements, energize the interstellar medium, and possibly regulate
the rate of star formation, little is known about how they form. The problem
is difficult observationally because massive star formation occurs in distant,
highly obscured regions, and it is difficult theoretically because of the many
processes that must be included [4]. Consequently, one can ask whether mas-
sive stars are just larger versions of low-mass stars, with the same, but scaled-
up, features, and also what determines the fraction of gas in the native cloud
that will eventually be transformed into stars.

Thus, the formation of both low and high mass stars, as well as the relation
between the infall and the outflows remain open questions, which the present
work aims to investigate. To do so, my collaborators and myself have decided
to use simplified models of the flows within young stellar objects mainly based
on self-similarity [16]. I will start this article by presenting the basis of star
formation, of self-similarity, and of our models. I will show the main properties
of typical solutions, as well as comparisons with observations. Finally, we will
try to investigate potential consequences of the models, such as temporal and
spatial evolutions during star formation.

2 Transit Flows

2.1 Coexistence of Infall and Outflow

The birth of a star starts within molecular clouds, by the collapse of the gas
that contracts under gravity [11]. The infall is accentuated by the radiation of
a fraction of the gas internal energy. At the beginning the gas should contract
homogeneously. However, a flow pattern develops that accelerates toward the
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origin, so precipitating the collapse. At later times, the outer region would
have approximatively power-law dependences on the radius. Provided the gas
remains optically thin, the wave front goes all the way in. Thereafter a point
mass forms and accretes the gas surrounding the origin. At this accretion
stage, the central ‘protostar’ is surrounded by a circumstellar disk and infalling
envelope [2]. Well shielded from the ambient interstellar radiation field, the
core of the collapsing cloud remains cold (≤20K), detectable in millimetre and
sub-millimetre wavelength regime. As the core collapse continues, the core gets
heated up by thermal radiation now trapped because of the increased density
and optical depth. This slows down the collapse till about 2000K, the tem-
perature where molecular hydrogen dissociates into atomic hydrogen. This
absorbs energy from the gravitational collapse, leading to further collapse of
the core. A similar process gets repeated when the temperature reaches to
ionize hydrogen atom and later helium. When the radiation pressure grows
strong enough to compete against the gravitational pressure, a quasi-stable
hydrostatic equilibrium is reached. A pre-main-sequence (PMS) star is born.
At this stage such an object can be observed at infrared wavelengths. Mean-
while, the angular momentum increases drastically during the collapse. It is
crucial for the angular momentum to be removed in order to further accrete
material on the central object. It is speculated that jets and outflows [3], often
associated with young stellar objects, can efficiently remove the excess angu-
lar momentum. This is a key element to understand the origin of the outflows
that surround forming stars.

Observationally it is has been possible to classify the various stages that
a protostar has to follow in order to end up as a star [2]. This classifica-
tion is based on the spectra of low-mass young stellar objects since they are
easier to investigate, as previously mentioned. The first stage corresponds to
Class 0 objects, that are the most deeply embedded sources. Such objects are
still surrounded by infalling envelopes containing at least half of the mass
of the central object. All Class 0 objects are associated with highly col-
limated molecular outflows, typically more energetic than those associated
with the next stage, i.e. Class I objects. The latter are still deeply embed-
ded in dense molecular cores and not optically visible. They are often as-
sociated with molecular bipolar outflows, though less energetic than those
associated with Class O objects. The Class II objects, or Classical T Tauri
stars, are surrounded by an accretion disk but with no infalling envelopes.
Finally, Class III objects have a photo-sphere with a normal stellar wind al-
though free of any significant amounts of circumstellar material (weak-lined
T Tauri stars).

Therefore, it is clear that outflows co-exist with infall as protostars form
within the collapsing cores of molecular clouds. Infall and outflow both appear
to be present from rapidly accreting embedded Class 0 objects to fully formed
T Tauri stars. This suggests that the dynamics leading to the formation of a
protostar are more complex than simple radial infall, and are dominated by
strongly anisotropic motions.
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2.2 Models of Molecular Outflows

The masses of molecular outflows approximately range from 0.1 to 20 solar
masses [4]. This indicates that the outflows consist of swept-up ambient
material rather than ejecta from a central protostar. One of the fundamental
questions here is the nature of the mechanism that sweeps up and accelerates
the cold ambient medium into oppositely directed outflows. Here we briefly
review current models for the origin of molecular outflows.

The first type of model is the ‘wind-driven’ model [17, 19]. Such a model
postulates that a largely neutral wind is weakly collimated by a thin disk and
evacuates a cavity that pushes a shell of the ambient molecular material before
it. However, the model fails to explain most of the observed phenomenon.

The second type of model, the ‘jet-driven’ model, postulates a jet as the
prime mover and achieves the collimation and acceleration of the molecular
outflow by virtue of entrainment. It seems unlikely as the primary driving
mechanism on efficiency grounds. In particular, jet simulations with cooling
jets (e.g. [5]) suggest that entrainment becomes much less effective when the
jets cool sufficiently that they are ‘ballistic’ in the ambient medium. A sub-
class of the previous model consists of outflows driven by intermittent jets
either because of sequential ejection or because of ‘precession’ of the axis.
But if the jet were to be the prime mover then it must contain all of the
momentum seen in the wider outflow. In some cases this appears plausible,
but it is far from clear that this is generally true. Moreover all such models
suffer from excessive collimation and from an expectation that the higher
luminosity sources should be better collimated.

For the third type of model, the outflow has its origin directly in the disk
by virtue of a magnetic field that subtracts gas and angular momentum and
deposits it in a collimated outflow (e.g. [6], or [14]). Such ‘disk driven’ outflow
models solve simultaneously in effect the angular momentum and magnetic
flux problems of a protostar, as well as allowing the accumulation of its mass,
by driving the molecular outflows. There remain some difficulties with this
picture however, not the least of which is the amount of energy needed to
extract the gas from the disk. Another omission from most of these models to
date is the inner boundary condition. However it is virtually certain that the
core-disk boundary layer is the seat of energetic activity. It is just this aspect
which is emphasized in the next type of model.

In this case, all the gas is ejected in the vicinity of the inner part of the disk.
This small scale beamed outflow has presumably to entrain the larger scale
molecular outflow. Such boundary layer models are known as ‘X-wind’ models
[18]. There seem to be a number of outstanding problems however. Perhaps
the most difficult is the cross field line flow that is required in their innermost
region. Moreover some unspecified torque coupling is assumed to act across
this region, which begs some of the important questions. The model has not
yet been carried to the point of a direct comparison with radio observations.
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A last and recent type of model, that is the subject of the present work,
takes into account the heating of the central object for the deflection and accel-
eration of the molecular gas [7, 9, 13]. In this heated quadrupolar self-similar
model, as material falls towards the central object, it is gradually slowed down
by increasing temperature, density and magnetic field encountered by mate-
rial near the central object. The pressure barrier, with the help of centrifugal
forces, deflects and accelerates much of the infalling matter into an outflow
along the axis of symmetry. The molecular material could eventually be en-
trained by the central fast outflow, described in all the previous models. In
this case, a smaller momentum would be needed for the entrainment.

2.3 Origin of the Quadrupolar Geometry

Most of current outflow models are based on a dipolar geometry where the
magnetic field lines are either advected via accretion towards the central ob-
ject in the accretion disk or are created in situ. Here we suggest a plausible
scenario for the origin of the magnetic structure of our model, where both
dipolar and quadrupolar magnetic field can be generated during the earli-
est stages of the formation of the protostar. Figure 1 shows such a temporal
sequence taking place in the parent molecular cloud. At the first stage, the
magnetic field is mainly poloidal and the gas starts to collapse. The infalling
material concentrates the magnetic field towards the accreting core mostly
in the equatorial region. This process should occur quasi-isothermally until
the optical depth in molecular lines approaches unity, carbon-monoxide being
the main coolant in the cloud. As the central object accretes mass and starts
heating, the pressure ‘barrier’ described above starts affecting the dynamics
and deflects some of the gas. The magnetic field is advected with the deflected
gas, forming high magnetic arches as shown in the third panel of Fig. 1. The
accretion disk appears as well as the jet. Of course, the medium has to be re-
sistive in order for reconnection to take place in the turbulent and heated gas
and finally for the quadrupolar structure to settle. At last, the inner accretion
disk and the jet still remain with a dipolar structure while the circulation
region ends up with a quadrupolar structure.

In addition to this potential scenario, any strong differential rotation of
accretion disks can be responsible for the excitation of quadrupolar modes in
disks, since accretion disks near protostars are probably heavily convective and
therefore prone to dynamo action. This is particularly true for rapidly rotating
disks, where this dynamical system may evolve naturally into a quadrupolar
structure [10]. Note that even though the poloidal components of the magnetic
and velocity fields have to be parallel, the toroidal components need not share
the same constant of proportionality. This permits a poloidal conservative
electric field to exist in the inertial frame, and so admits steady Poynting flux
driving. One needs then to introduce an electric potential function and an
azimuthal magnetic field independent of the azimuthal velocity.
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Fig. 1. Schematic evolution of a collapsing molecular cloud towards
quadrupolar topology. Heavy solid lines correspond to the magnetic field sur-
faces. The grey arrows represent the motion of the gas. The central grey circular
region (about 100 AU), that represents the zone where the jet is launched, is not
treated in the present model as well as the thin accretion disk (also in grey). The
protostar is located at the centre of this circle

These considerations have led us to use the set of equations of steady,
axisymmetric, ideal MHD and to seek solutions with a quadrupolar geometry,
in order to model outflows around protostars [16]. The last but crucial element
of the model is the self-similarity, that we are going to present now.
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2.4 Self-similarity

A phenomenon is called self-similar if the spatial (or temporal) distributions
of its properties at various different times (or locations) can be obtained from
one another by a similarity transformation. This means that the investigation
of the full phenomenon can be reduced to the study of the properties of the
system for only a specific time (or location). Thus, for example, if the density
of the distribution of matter is known everywhere in space at a given time,
then it is known at any subsequent time. If the origin of time can be chosen
arbitrarily, the scales of length and mass are also arbitrary, and the system is
‘scale-free’. This simplifies the problem drastically. Mathematically, it implies
a reduction of the system of partial differential equations that describe the
system, to ordinary differential equations, which most of the time makes their
investigation simpler.

For a long time, self-similar solutions were treated by most researchers as
though they were merely isolated exact solutions to special problems: elegant,
sometimes useful, but extremely limited in significance. In fact, it was only
gradually realized that these solutions were actually of much broader signif-
icance. They turn out not only to describe the behavior of physical systems
under some special conditions, but also describe the intermediate-asymptotic
behavior of solutions to wider classes of problems in the range where these
solutions no longer depend on the details of the initial and/or boundary con-
ditions, yet the system is still far from being in an ultimate equilibrium state.
Self-similar solutions have also served as standards in evaluating approximate
methods for solving more complicated problems. Such self-similar solutions
provide, at least, the basic physical insights for the general problems, and
may indicate the way to more detailed investigations.

The crucial step in any field of research is to establish what is the mini-
mum amount of information that is actually required about the phenomenon
being studied. All else should be put aside in the study. Thus, the primary
thing in which the investigator is interested is the development of the phe-
nomenon for intermediate times and distances away from the boundaries such
that the effects of random initial features or fine details in the spatial struc-
ture of the boundaries have disappeared but the system is still far from its
initial equilibrium state. This is precisely where the underlying laws govern-
ing the phenomenon appear clearly. Therefore intermediate asymptotics are
of primary interest in every scientific study. It is noteworthy that the concept
of intermediate asymptotics is used not only in mathematical physics, but
also in our perception of visual art, for instance. We have to look at paintings
at distance great enough not to see the brush-strokes, but at the same time,
small enough to enjoy not only the paintings as a whole but also its important
details.

There exist two kinds of self-similar models. First, the self-similar solu-
tions of the first kind are obtained when in the passage to the limit from the
non-self-similar non-idealized problem to the self-similar idealized problem,
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there is a complete similarity in the parameters that make the problem non-
idealized and its solution non-self-similar. Expressions for all the self-similar
variables can be obtained by applying dimensional analysis. For the solutions
of the second kind, the idealization of the original problem is such that there
is incomplete similarity in the similarity parameters. Determination of the ex-
ponents of the self-similar variables leads to a non-linear eigenvalue problem.
The constant multiplier appearing in the self-similar variables is left unde-
termined in the direct construction of the self-similar solutions of the second
kind. This constant can be found by flowing the entire process of evolution of
a solution of the non-idealized problem into a self-similar asymptotics.

In the present problem of star formation, considerations of dimensional
analysis turn out to be sufficient for proving the self-similarity of the second
kind starting from the formulation of the mathematical problem, and for
obtaining expressions for the scale and the self-similar variables. In our case,
self-similarity means that we can choose variable scales such that in the new
scales the properties of the phenomenon can be expressed by functions of one
variable, for example F (r, θ) = f1(θ)f2(r). The function that determines the
factor by which the numerical value of a physical quantity changes upon pas-
sage from the original system of units to another system within a given class
is called the dimension function of that quantity. The dimension function for
any physical quantity is always a power-law monomial. This follows from a
single, naturally formulated (but actually very deep) principle: all systems
within a given class are equivalent, i.e. there are no distinguished, somehow
preferred, system among them. Therefore, if we assume that f2(r) is given by
a power law of r, the solutions of the problem can be reduced to the solution
of a system of ODEs for the vector function f1(θ).

Furthermore, it is possible to separate dimensional quantities from the
dimensionless ones. Indeed, in our case, we can consider that the central
object, that will eventually become a star, releases thermal energy not at
a point, but within a sphere of a certain finite radius ro. If we choose such
a scale ro for the radial variable and F for any property of the phenomenon,
then the distribution of F(r, θ) can now be expressed in the form

F(r, θ) = Fo f1(θ) f2(r/ro) . (1)

In this equation, F(r, θ) and Fo are dimensional quantities. Such a self-similar
solution to the problem with singular initial data is an asymptotics of a wider
class of solutions of initial-value problems, up to a constant, Fo in the present
case.

Let us see now in more detail how we can apply this formalism to the
infalls and outflows surrounding young stellar objects.

2.5 Transit Models

A very interesting indication on the application of self-similarity has come
from numerical simulations a few years ago. Indeed, Tomisaka [20] has studied
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numerically the dynamical collapse of magnetized molecular cloud cores from
the runaway cloud collapse phase to the central point mass accretion phase.
He has found that the evolution of the cloud contracting under its self-gravity
is well expressed by a self-similar solution. Moreover inflow-outflow circula-
tion appeared as a natural consequence of the initial configuration. Such a
result suggests that the self-similar approach can be a good first approxi-
mation of the infalls and outflows around protostars. Indeed, the self-similar
heated, quadrupolar and axisymmetric magnetohydrodynamic models regard
the molecular outflow as a natural consequence of the circulation established
by the collapse of the pre-stellar cloud. Let us now describe this model in
more detail.

The Variables

The solutions are developed within the context of r-self-similarity wherein a
power of r multiplies an unknown function of θ; the spherical coordinates r, θ
and φ being used [16]. The only physical scales that enter into our calculation
are the gravitational constant G, the fixed central mass M , and a fiducial
radius ro [13]. The power laws of the self-similar system are determined, up
to a single parameter α, if we assume that the local gravitational field is
dominated by a fixed central mass. In terms of the fiducial radial distance,
ro, the self-similar symmetry is sought as a function of two scale invariants,
r/ro and θ, in a separated power-law form. The self-similar index α is a free
parameter of the solution, but must lie in the range −1/2 < α ≤ 1/4, for
simultaneous infall and outflow to occur [16].

Hence, if we assume that the gravitational potential is dominated by the
central mass, i.e. self-gravitation is negligible, the equations of radiative MHD
admit the following radial scaling relations for the variables

v =
√
GM

ro

(
r

ro
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u(θ) , (2)
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M
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(
r
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√
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where v, ρ, B, p, T and Frad respectively correspond to the velocity, the
density, the magnetic field, the pressure, the temperature and the radiative
flux. In these equations the microscopic constants are represented by k for
Boltzmann’s constant, mμ for the mean atomic weight, mH for the mass of
the hydrogen atom. In the last equation, the index αf is a measure of the loss
(if negative) or gain (if positive) in energy by radiation as a function of radial
distance. Indeed, when αf is negative, it corresponds to a loss in energy due
to the net radiation leaving the region, while, for a positive αf , the system
has an energy input due to the absorption of radiation. If one supposes that
the opacity is predominantly due to dust, the index αf is related to α by
αf ≈ −2(1/4 − α). Consequently, the case αf = 0, where there is no net flux
of radiation through the domain of our solution, corresponds to α = −1/4.
For larger (respectively smaller) values of α, there is a net loss (gain) of energy
by radiation [7, 13, 16].

The self-similar variable directly related to magnetic field y can be
divided into poloidal and toroidal components (see Fig. 2). In the present
model the two components are not equal. They are respectively defined by
yp,φ(θ) = Map,aφ/

√
4πμ(θ). Consequently the system also deals with two dif-

ferent components of the Alfvénic Mach number Map and Maφ defined by

M2
ap,aφ(θ) ≡ v2

p,φ/
(
B2
p,φ/4πρ

)
. We will refer to Θ0 as the value of the self-

similar temperature Θ(θ) on the axis.

The System of Equations

We use the self-similar forms in the usual set of ideal MHD equations together
with the radiative diffusion equation when applicable [16]. In order to make
the system tractable, we assume axisymmetric flow so that ∂/∂φ = 0 and all
flow variables are functions only of r and θ. We further restrict ourselves to
steady models (i.e. ∂/∂t = 0). Magnetic field and streamlines are required to
be quadrupolar in the poloidal plane for the circulation model. Under these
assumptions the self-similar equations are:

1. Mass flux conservation

(1 + 2α)μur +
1

sin θ
d

dθ
(μuθ sin θ) = 0 , (8)

2. Magnetic flux conservation

(α+ 5/4)ur
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+
1

sin θ
d

dθ

(
uθ sin θ
yp

)
= 0 , (9)

3. Radial component of momentum equation
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ap

)− (u2
θ + u2

φ

)(
1 − α+ 1/4

M2
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−u2
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2
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3
2
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Θ + 1 +

uruθ
M2
apyp

dyp
dθ

= 0 , (10)
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Fig. 2. Poloidal current circuit in the asymptotic domain. A schematic
representation of the current, in the case of a field with two different polarity zones
(dipolar symmetry, left) on the wind source (central object), and in the case of three
different polarity zones (quadrupolar symmetry, right) on the wind source. Current
is concentrated in boundary layers near the pole and the neutral magnetic surfaces
(dotted lines). The heavy arrows indicate the main poloidal electric current channels.
The dashed line is meant to represent a surface at infinity. In the case of kinetic winds
there is also a very weak and diffuse current in the field regions between the regions
of largest current flow so that the boundary layer current vanishes at infinity

4. θ-component of momentum equation
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5. Angular momentum conservation
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6. Faraday’s Law plus zero comoving electric field
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]
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This set of equations can produce either circulating flows, pure infall, or pure
outflow.

Typical Behavior of Solutions

Here, we list the main features that solutions of the models show. The prin-
cipal characteristic of the model is that it produces a heated pressure-driven
outflow with magneto-centrifugal acceleration and collimation. An evacuated
region exists near the axis of rotation where the high speed outflow is produced
[7]. This outflow decreases in speed and increases in mass systematically with
angle from the axis. Near the equatorial plane a thick rotating extended disk
forms naturally when sufficient heating is provided to produce a high-speed
axial outflow. The most rapidly outflowing gas is always near the symmetry
axis because these streamlines pass closest to the star, deeper into the grav-
itational potential well. Also, the material on these streamlines is heated the
most vigorously. As the gas gets closer to the source, it rotates faster. Gas
streamlines make a spiraling approach to the axis and then emerge in the
form of an helix wrapped about the axis of symmetry. The infalling plasma
therefore has a larger electric current driven by the rotational motion. This
increases the magnetic energy at the expense of gravity and rotation, which is
eventually converted into kinetic energy as the gas is redirected outwards [16].
The magnetic field acts to collimate and accelerate the gas towards the polar
regions. There the flow presents a strong poloidal velocity and a low magnetic
energy. The Poynting flux included in the model increases both the velocity
and collimation of the outflows by helping to transport mass and energy from
the equatorial to the axial regions.

One remarkable prediction of these models is that the magnetic field at a
given radius varies dramatically with angle. The values range from 10 micro-
Gauss to a milliGauss at 104 AU, from 10−2 to a few Gauss at 20 to 40 AU
in agreement with observations [3]. Peak field strengths may reach values as
high as 1 to 100 Gauss at 1 AU.

It is found that massive protostars produce faster velocities with large
opening angles. Rotation and collimation decrease together with increasing
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temperature and therefore probably with the bolometric luminosity of the
central object. It is also found that larger opening angles are associated with
smaller magnetic fields. If the magnetic field varies secularly as the evolution
proceeds, then a sequence of our models could be regarded as a series of
‘snapshots’ of the protostellar evolution. This evolutionary sequence would
show that the opening angle increases with time, as the magnetic field becomes
less important. This would be consistent with the notion that the youngest
outflows are generally the most collimated.

An important point is that the material ejected in the outflow acquires an
important energy due to a combination of heating by the central protostar,
pressure gradients developed by the infalling material, and magnetic forces
due to the non-zero Poynting flux.

Comparison with Observations

Synthetic spectral lines from 13CO (J=1 → 0) allow direct comparison with
observational results via channel maps, maps of total emission, position-
velocity and intensity-velocity diagrams [7, 13]. Synthetic radio maps of total
intensity and in velocity channels have been calculated based on the dynam-
ical solution, projected on the sky at various angles. Most of the features of
outflow observations are reproduced in almost every respect. Not only the
forms of the lines but also their brightness temperatures are reproduced and
this in turn leads to predictions for densities, dust temperatures and magnetic
field strengths. The most important feature of these channel maps is that the
opening angle of the outflow gradually decreases as the magnitude of the ve-
locity increases. Thus, our models naturally produce outflows in which most
of the material is poorly collimated and moves at relatively low velocities, but
the fastest jet-like components are very well collimated towards the axis of
symmetry.

Many molecular outflows show wide, hollow cavities at the base of the out-
flow. In the present model, the molecular cavities may be identified with the
substantial decrease in density in the intermediate region between the jet and
the molecular outflow. The central jet is in atomic form, being of much higher
excitation, and occupies the axial region. The molecular outflows appear thus
as a hollow conical structure. In this scenario, the cavity is a result of the
circulation pattern itself, and we need not assume that the jet is precessing.
Of course, the action of the jet may also participate the widening of the cavity
with time.

The circulation model provides a self-sustained acceleration of the molecu-
lar material in the axial region. This has interesting consequences concerning
the subsequent interaction of the flow with the coaxial jet. Since in our case,
the difference in velocities between the jet and the molecular outflow material
are reduced from the start, the shocks in the zone of acceleration due to their
interaction should be less strong. This would also imply that the post-shock
cooling time is reduced too. In this way, the kinetic temperature in the outflow
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would rapidly decrease again to a value comparable to that of the ambient
medium as shown from observations.

The central fast jet has still the largest part of the total momentum per unit
area, and the molecular outflow could undergo a prompt entrainment from
the head of the jet. But the most interesting feature of the circulation model
is probably that it can produce solutions where the mass of the molecular
outflow is larger than the final mass of the forming star. This is particularly
true if self-gravity is included in the model. One may then understand how
bipolar outflows from massive protostars are observed to transport masses
largely exceeding those of the associated stars.

3 Jet Asymptotics

3.1 General Results

The last but central element around protostars is the fast jet. A consensus
seems to prevail on the magneto-centrifugal origin of jets, either launched from
the accretion disk (disk wind) or from the location of the interaction of the pro-
tostar’s magnetosphere with the disk (X-wind). Indeed, as we have mentioned
earlier, accretion disks play a key role in the physics of the fast jets from young
stellar objects. Infalling, rotating matter is stored in these disks until dissipa-
tion allows material to spiral inward and feed the central, gravitating object.
Such disks are believed to support strong, well ordered magnetic fields. The
current consensus holds that these fields are the agents for producing jets in a
process known as magneto-centrifugal launching. In this mechanism, plasma
in the disk is loaded on to corotating field lines. If conditions in the disk
are favorable the plasma is centrifugally flung outward along open field lines,
which form a certain angle with the disk’s surface. The ensuing plasma flow
properties must then be determined by solving for the equilibrium of forces
parallel and perpendicular to the magnetic surfaces, the former described by
using the Bernoulli equation and the latter is solved via the Grad-Shafranov
equation.

We have proposed a model for jet, known as the Given Geometry Method
[12, 14] that allows asymptotic MHD jet equilibria to be linked directly to
the properties of the rotating source. The model assumes a time-independent,
axisymmetric flow with a polytropic equation of state. It further simplifies
the problem of magneto-centrifugal launching/collimation by assuming that
the nested magnetic flux surfaces defining the flow possess a shape which is
known a priori inside the fast critical surface. The fast surface defines the
locus of points beyond which the flow is kinetic energy dominated. The flux
surfaces are assumed to be conical and, as an additional simplification, an
equilibrium across the surfaces is assumed at the Alfvén point which yields
an equation referred to as the Alfvén regularity condition. The equilibrium
parallel to the surfaces takes the form of criticality conditions at the two
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other critical points. Boundary conditions are provided as a model for the
source rotator. Asymptotically, the jet is assumed to be in pressure equilibrium
with the external medium. The pressure matching condition along with with
the Grad-Shafranov and Bernoulli equations are all solved in the asymptotic
cylindrically collimated regime.

The solutions have the following general properties:

• For winds which are kinetic-energy dominated at infinity the analytic
solutions have magnetic surfaces that focus into paraboloids. The current
slowly weakens as the inverse of the logarithm of the distance to the wind
source while the axial plasma density falls-off as a negative power of this
logarithm.

• For winds carrying Poynting flux at large distances the solutions asymp-
totically approach to nested cylindrical and conical magnetic surfaces.

All winds have been shown to possess a circumpolar current-carrying
boundary layer, which has the structure of a pressure-supported plasma-jet
pinch. Null-surface boundary layers have the structure of pressure-supported
current sheets. The total electric current is constant or slowly diminishes with
distance according to an inverse logarithmic law for the Poynting flux and
kinetic winds respectively. This dimunition is caused by minute amounts of
current flowing through the diffuse field regions from the pole to the nearest
null surface.

3.2 Jet Simulations

Establishing initial equilibria for MHD jet simulations is non-trivial. This is
not the case for hydrodynamic jets where the required force balance across
the jet and ambient medium interface allows for the use of so-called top-hat
profiles (i.e. the hydro variables are constant across the jet cross section). Such
distributions may not be tenable in MHD jet studies. The difficulty can be
seen by decomposing the Lorentz force into a tension term and a pressure
term. Fl ∝ −∇B2 + 2(B · ∇)B. In a steady, cylindrically collimated jet only
Bφ and Bz components of the field are possible. Jets with purely longitudinal
fields, B = Bz, can be easily set in pressure balance with the environment
and top-hat profiles may be used. Toroidal or helical field geometries require
more complicated initial conditions unless the field is assumed to take on a
force free configuration. If the field is not force free, MHD jets must have
variable distributions of gas pressure and, perhaps, other variables in order to
balance the hoop stresses associated with the tension force.

Faced with the problem of initial conditions researchers studying radiative
MHD jets have, in general adopted one of two strategies: (i) use force-free
fields; (ii) use ad-hoc gas pressure and magnetic field distributions configured
to be in initial force balance. The results of these studies for both steady and
time-variable (pulsing) jets reveal a number generic features.
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• Jets with purely longitudinal geometries do not show propagation charac-
teristics which differ significantly from the hydrodynamic case.

• Jets with a toroidal field component will be subject to strong hoop stresses
especially in the region between the jet and bow shocks.

There is a third approach that we have used to simulate jets [14] whose
initial conditions jets are taken directly from the model of the magneto-
centrifugal launching/collimation process described above. The model, known
as the Given Geometry Method (GGM) allows asymptotic MHD jet equilibria
to be linked to the properties of a rotating source.

In terms of dynamics, The most important properties of the jets derived
via the GGM are the radial variations in the density ρ(r) and the toroidal
component of the magnetic field Bφ(r). In particular when the source is com-
posed of a rapidly rotating disk truncated some distance from a rigidly rotat-
ing star, the emitted jets can have strong density stratifications, i.e. a high
density axial core surrounded by a lower density collar. The strongest toroidal
field is located at the boundary of the core and collar creating a magnetically
confined jet-within-a-jet structure. Note that the bulk of the jet’s momentum
resides in the core. Hence we expect this portion of the beam to penetrate
more easily into the ambient medium during the jet’s propagation while the
collar will be more strongly decelerated.

The jets in these simulations are considerably more complex than the
usually used ‘top-hat’ profiles [8]. Many features of the simulation are in good
agreement with observations, such as the molecular cavities, the location and
shape of the shocks, as well as the variation with distance of the ionization
fraction and of the density along the jet. The stability analysis of the equilibria
used in the simulations has also been carried out [15], allowing us to investigate
the magnetic current driven instabilities that develop in the jet simulations.
By varying the properties of the source, it is also possible to vary the properties
of the jet itself. This introduce non-ad-hoc variations of the jet and gives rise
to more complex behaviors of the propagating jet but also of the interaction
with the ambient medium. This opens the possibility that the physics of the jet
source may be read off the jets themselves. Our results suggest that one might
ideally be able to distinguish between different classes of MHD launching
models via consideration of the way the jets from these models would appear
on the sky.

4 Global Infall-outflow Models

Star forming regions show many different types of flows and elements, optical
jets, molecular outflows, infalls, accretion disk, a central protostar, masers
and other emissions. These are clearly inter-related, but is it because they
have the same cause, or because one or more components provoke the others,
or because they are simply different aspects of the same underlying global
behavior?
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With this question in mind, we have proposed a global model [16] that
combines a jet model, a circulation model and an infalling envelope model. In
the vicinity of the protostar, we have a accretion-ejection engine driving the
jet. The molecular outflow is primarily powered by the infalling matter. The
outflow follows a circulation pattern around the central object without being
necessarily entrained by the jet as schematically represented in Fig. 3. The
last element of the model is the extended region where material is falling from
the cloud onto the flattened accretion disk, not treated by the present model.
This falling envelope extends to a few thousand AU and is also described by
the set of self-similar equations of the circulation model. In fact, the material,
for both the circulation and the infalling envelope models, originate from
the same region in the molecular cloud. We have suggested that the same
set of equations can apply in both cases. This set of equations would not
be applicable to the thin disk where resistivity, ionization fraction and other
parameters can substantially differ from the outer regions. In fact, this thin
disk acts as a sink for the infalling gas in our model.

The only physical scales that enter into our calculation are the gravita-
tional constant G, the fixed central mass M , and a fiducial radius ro. The

−1.0×104 0.0×100 1.0×104
−1.0×104

0.0×100

1.0×104

R (AU)

Fig. 3. Streamlines around protostars. Schematic representation of streamlines
and magnetic field lines projected in the poloidal plane. Large and small arrows
respectively indicate the matter trajectories and the magnetic field directions. The
typical sizes of the upper and lower views, and of the dashed circle, enlarged for
clarity, are 2,000, 200 and 0.5 AU respectively. The zones respectively correspond
to the jet, the circulation and the infalling envelope models
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parameters of the model are the indexes α and αf of the self-similar system,
and θmin and θmax, the limiting angles between the three regions of the model.
Magnetic field and streamlines are required to be quadrupolar in the poloidal
plane for the circulation model.

5 Time Dependent Models

We have also investigated time dependent and anisotropic collapse models for
earlier stages of stellar formation when the star has not yet formed, and most
of the gas still resides in the surroundings [1]. These self-similar models take
quite a different approach by treating the time-dependent problem of accretion
and simultaneous outflow in a dynamically collapsing and self-gravitating core.
The basic non-dimensional quantities from which we construct our self-similar
model are given by the poloidal angle θ and the variable X ≡ − r

cs t , where r is
spherical radius, t is time, and cs is a fiducial sound speed. The models provide
a reasonably complete description of the dynamics on all scales between the
inner hydrostatic core and an outer X point. The previous steady-state version
of the model, described in the previous sections, is expected to apply external
to the collapsing region modeled here, and possibly at later times. Remarkably,
such a collapse model that includes self-gravity, time-dependence, rotation and
magnetic field, admits an exact and completely analytic solution. We note
that there are few other analytic solutions of this complexity in all of MHD.
The main point of this work was to demonstrate that infall and outflow can
coexist and arise naturally from our self-similar equations, especially during
the earliest stages of formation of the central protostellar core.

6 Conclusion

In the introduction, we were asking how a star could simultaneously be a
source of both powerful ejections and infall, and how a star could grow by
losing mass? We have seen that such a paradox is solved if the outflows are
driven by infall and accretion. In this respect, we have presented a global MHD
model for flows around young stellar objects. The model is based on the self-
similarity assumption applied to the basic equations of ideal axisymmetric
and stationary MHD, including Poynting flux. The global model combines a
jet model, a circulation model and an infalling envelope model. Instead of the
usual mechanisms invoked for the origin of molecular outflows, the outflow
is powered by the infalling matter through a heated quadrupolar circulation
pattern around the central object. The solutions show dynamically significant
density gradients in the axial region, precisely where the radial velocity and
collimation are the largest. From an observational point of view, we have
clarified the nature of the molecular outflow acceleration and its relation with
the fast jet, by providing a global picture of the jet/outflow system which
does not primarily rely on entrainment (prompt or turbulent). The model
also reproduces well observational features.
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In the introduction, we were also asking whether massive stars were just
larger versions of low-mass stars. The answer that we have presented here is
not simple. Indeed, the various elements in the vicinity of the protostar, i.e.
accretion disk, jet, molecular outflow, infalling envelope, are present in both
cases, but they have different importance. The central jet engine appears to
be dynamically more important for low mass stars, while it is the circulation
part that gives rise to the molecular outflows that dominates the properties
of massive objects.

In conclusion, we suggest that molecular outflows are dominated by the
global circulation of material around the protostar, except for in a thin layer
surrounding the jet, where the dynamics is governed by entrainment. We
stress that, in the present model, the two flows (atomic and molecular) are
not strongly linked dynamically, and, hence, there is no need to transfer large
momentum from the jet to the molecular outflow through the entrainment
processes.

The present work suggests that radiative heating and magnetic field may
ultimately be the main energy sources driving outflows during star formation,
at the expense of gravity and rotation. Finally, although the details of the
outflows mechanism may be peculiar to individual objects we believe the infall-
outflow circulation to arise naturally given accretion, and thus could also
be present in other astronomical objects such as active galaxies and around
suitably placed compact objects, such as neutron stars.

7 Open Questions

We would like to thank the organizers of the school for their work and the
Cosmogrid Project funded by the Irish Higher Education Authority. To con-
clude, we now list open questions that will hopefully be addressed in a near
future by students and young researchers. How does a star set its mass? Do
all stars produce jets? Do jet variations come from the source or from insta-
bilities? Could observations of jets allow us to discriminate between models?
Can we reproduce jet physics in laboratory experiments?
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1 The Accretion-ejection Paradigm

This lecture is designed to be read with an accompanying file (pdf or ppt)
where more illustrations and figures can be found. It can be retrieved at the
URL: http://www-laog.obs.ujf-grenoble.fr/∼ferreira/JETSET/school.html. I
also recommend the reviews of Königl & Pudritz [32], Ferreira [17]. In
Ferreira et al. [19], a review of all MHD models for Young Stellar Objects has
been made with a comparison of the corresponding jet kinetic observational
properties.

1.1 A “Universal” Picture

Actively accreting “classical” T Tauri Stars (TTS) often display supersonic
collimated jets on scales of a few 10–100 AU in low excitation optical forbid-
den lines. Molecular outflows observed in younger Class 0 and I sources may
be powered by an inner unobserved “optical jet” (see Cabrit’s contribution,
this volume). These jet signatures are correlated with the infrared excess and
accretion rate of the circumstellar disc [6, 27]. It is therefore widely believed
that the accretion process is essential to the observed jets, although the pre-
cise physical connection remains a matter of debate: do the jets emanate from
the star, the circumstellar disc or the magnetospheric star-disc interaction?

One argument in favor of accretion-powered disc winds is its “universality”
[34]. Indeed, self-collimated jet production from accretion discs is also invoked
to explain an accretion-ejection correlation observed in compact objects (i.e.
some active galactic nuclei, quasars and X-ray binaries, see e.g. [39] and ref-
erences therein). The underlying idea is quite simple: accretion discs around
a central object can, under certain circumstances and whatever the nature of
this object, drive jets through the action of large scale magnetic fields. These
fields would tap the mechanical energy released by the mass accreting in the
disc and transfer it to the fraction that is ejected [5]. The smaller the fraction
and the larger the final jet velocity. One thing that must be understood is how
the presence of such jets modifies the nature of the underlying accretion flow.
Many papers in the literature actually assume (implicitly or not) that the ac-
cretion disc resembles a standard accretion disc as envisioned by Shakura &
Sunyaev [49]; Frank et al. [24]. This is wrong as will be shown later.

A Magnetized Accretion-Ejection Structure (hereafter MAES) is an accre-
tion disc where accretion and ejection are interdependent processes. As such,
it is composed of an accretion disc (called hereafter JED for Jet Emitting
Disc) thread by a large scale magnetic field of bipolar topology and giving
rise to the two bipolar jets. The goal of the study of a MAES is to obtain

(1)- the conditions allowing for a steady state accretion-ejection process;
(2)- the ejection to accretion rates ratio as function of the disc physical

conditions;
(3)- the jet properties (kinematics, power, shape) as function of the disc

properties.
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1.2 From Magnetostatics to Magnetohydrodynamics

Magnetohydrodynamics (MHD) is the theoretical framework required to
describe the interaction between an ionized gas and magnetic fields. But
magnetostatics is very helpful to understand basic mechanisms.

A zeroth order description of a MAES is that of a rotating conducting
disc thread by a magnetic field aligned with the rotation axis (much alike
a Barlow’s wheel). According to Faraday’s induction law, an electromotive
force (emf) across the disc, e =

∫
(u∧B) ·dr =

∫
ΩrBzdr, creates an electric

potential difference between the disc center and its border (Fig. 1). If some
conducting wire connects the border to the center, closing thereby an electric
circuit, then a radial electric current is induced. Because of this current I, the
disc becomes prone to a Laplace force, F =

∫
IBzdr, which will slow down

the disc (Lenz’s law). One could also say that the field “resists” to the shear
provoked by the rotation (the current I induces a toroidal componentBφ). But
such a “mechanical” view of the magnetic field disregards its electromagnetic
nature and one may tend to forget that electric currents must be maintained
and able to flow.

In astrophysics, the disc is made of gas that, provided it can cross the field
lines, will accrete towards the central object as it looses angular momentum.
This angular momentum is linked to the electric current flowing in the jets: the
jet kinetic power is fed by the flux of magnetic energy provided at the disc sur-
face. Note that while the streamlines of the ejected material go to infinity those
of the current density must be closed and return to the disc where the emf is.

This is actually the reason why jet collimation is a subtle issue [29, 30, 43].
Make a cut at a distance z of a jet and compute the total current flowing
inside it, namely I =

∫
dr2πrJz . If this current is non zero and (for instance)

negative, then one might say that the Laplace force will be directed towards

Fig. 1. Left: A rotating disc embedded in a magnetic field induces a
current leading to a magnetic braking (Barlow’s wheel: see e.g. http://
www.sparkmuseum.com/MOTORS.HTM for many illustrations). Right: A MAES
can be seen as two independent electric circuits, each corresponding to a jet. Asym-
metric jets can thus be easily achieved, even with a symmetric poloidal field
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the jet axis (Ampere’s theorem tells that Bφ is negative in that case). This is
the basic idea of the “magnetic hoop stress” that provides a self-confinement
to jets. However, the local magnetic force is actually J ∧ B and depends
on the radial distribution of Jz(r)! This depends on the lateral boundary
conditions (jet axis and outer edge) but also on what happened upstream
(or in the past, if we follow a lagrangian particle): since jet acceleration is a
conversion of electric into kinetic power, then jet collimation depends as much
on jet acceleration. One cannot therefore solve the jet problem assuming for
instance the shape of the field lines: the full MHD equations must be solved.

The current flowing inside jets is precisely the current that allows for
accretion. The accretion-ejection phenomenon has therefore to be viewed as
a global electric current system.

1.3 Basic Assumptions

Modeling a MAES requires several assumptions:
(1) Presence of a large scale vertical magnetic field in the disc. Its

origin and amplitude remain an open question. For the purpose of illustration,
we will assume a positive vertical component Bz anchored in the disc (bipolar
topology).

(2) Single-fluid MHD: matter is assumed ionized enough so that all
species (ions, neutrals and electrons) are well coupled and can be treated as
a single fluid. Such an assumption should always be verified a posteriori for
any model but it is seldom made (see e.g. [25] for how to do it).

(3) Axisymmetry: using cylindrical coordinates (r, φ, z) all quantities
are assumed to be independent on φ, the jet axis being the vertical axis. Then,
Eφ = 0 and all quantities can be decomposed into poloidal (the (r, z) plane)
and toroidal components, e.g. u = up +Ωreφ and B = Bp +Bφeφ. A bipolar
magnetic configuration can then be described with Bp = 1

r∇a ∧ eφ, where
the magnetic flux function a(r, z) is an even function of z and with an odd
toroidal field Bφ(r,−z) = −Bφ(r, z) (Fig. 2).

(4) Non-relativistic MHD, since observed motions are non-relativistic
(this criterion is enough as long as MHD ordering applies).

(5) Steady-state: all astrophysical jets display proper motions and/or
emission nodules, showing that they are either prone to some instabilities or
that ejection is an intermittent process. However, the time scales involved
in all objects (from 1 to 102 yrs) are always larger than the orbital time
scales in the innermost regions of the underlying accretion disc (close to the
star). Therefore, a steady state approach is appropriate as a first step, while
numerical simulations will be required to investigate time-dependent flows.

1.4 Governing MHD Equations

According to the aforementioned assumptions, we use the following set of
MHD equations (in MKSA units):
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Fig. 2. Axisymmetric jets are made of magnetic surfaces of constant magnetic flux
nested around each other and anchored in the disc. Each surface behaves like a
funnel whose shape depends on the transfield equilibrium. Solving the jet equations
requires to specify several quantities (see text)

Mass Conservation
∇ · ρu = 0 (1)

Momentum Conservation

ρu · ∇u = −∇P − ρ∇ΦG + J ∧ B + ∇ · T (2)

where ΦG is the central star gravitational potential and J = ∇∧B/μo is the
electric current density. The last term (with the stress tensor T) is actually due
to a sustained turbulence inside the disc (it vanishes outside) which allows to
transport angular momentum radially in the outward direction (see Terquem’s
contribution). It is presumably due to the presence of small scale magnetic
fields but is usually grossly modeled by an anomalous viscosity νv = αvCsh,
where αv is a free parameter, Cs the disc sound speed and h(r) the local disc
vertical scale height [24, 49].

Ohm’s Law and Toroidal Field Induction1

ηmJφ = up ∧ Bp (3)

∇ · (ν
′
m

r2
∇rBφ) = ∇ · 1

r
(Bφup − BpΩr) , (4)

1 See Pelletier’s contribution in this volume. Remember that Eφ = 0 while some
algebra is required in order to derive (4) from the induction equation.
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where ηm = μoνm and η′m = μoν
′
m are anomalous magnetic resistivities. The

origin of these resistivities is the same as for viscosity, namely turbulence and
they also vanish outside the disc. One expects turbulent media to display
anomalous transport effects of heat, momentum but also magnetic flux. Note
however that rotation in a Keplerian accretion disc introduces a strong dy-
namical constraint. Indeed, the shear induced by rotation will unavoidably
lead to huge toroidal magnetic fields until reconnection takes place (triggered
by e.g. the tearing mode instability). As a consequence the amount of mag-
netic dissipation in the toroidal direction might be much larger than in the
poloidal direction. This has lead to the introduction of two anomalous coeffi-
cients, ηm (νm) and η′m (ν′m), related respectively to the poloidal and toroidal
fields [21].

Perfect Gas Law
P = ρ

kB
μ̄mp

T , (5)

where mp is the proton mass and μ̄ a generalized “mean molecular weight”
(in a fully ionized plasma μ̄ = 1/2). This expression assumes that all fluids
(electrons, neutrals and ions) have the same temperature T . This is fulfilled
only if the thermalization time scale (usually done through collisions) is short
enough. Such an assumption should always be verified a posteriori [25].

Energy Equation

Pu · ∇ ln
T

μ̄
= (γ − 1) (Q+ Pu · ∇ ln ρ) , (6)

where Q = Q+ − Q− is the sum of all heating Q+ and cooling Q− terms
(including thermal conduction) and γ the adiabatic index. There are many
unsolved issues related to this exact equation for a single fluid.

(1) Inside the disc, turbulence leads to an energy dissipation Q+ = ηmJ
2
φ +

η′mJ2
p + ρνv|r∇Ω|2, respectively Joule and “viscous” heating, but also to

a cooling due to an energy transport by anomalous thermal conductivity.
Moreover, the disc being optically thick, the radiation transport critically
depends on the local opacity regime, which varies both with radius and
height. Moreover, the disc surface is also the optically thick-thin tran-
sition, which is always an issue (see [21] for a discussion). Besides, the
energy equation in a standard accretion disc is usually written Q+ = Q−,
the other terms being of the order (h/r)2 [24]. But these terms are impor-
tant in the jet and cannot be neglected.

(2) In the jet itself, although radiation may not be the dominant cooling
term, it must be taken into account if one desires to compute e.g. the
jet (forbidden or permitted) emission lines or even radio continuum. A
realistic and self-consistent treatment of the energy equation is therefore
still out of range (even if one decouples the disc and its jets) and some
stratagems must be used.
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The simplest way to deal with the energy equation in a MAES (valid in
both the disc and its jets) is to use a polytropic equation of state P = KρΓ ,
where the polytropic index Γ can be set to vary between 1 (isothermal case)
and γ (adiabatic case). Note that K has to vary radially but remains constant
along each field line: the jet entropy is thus fixed by the conditions prevailing
at the disc surface.

A more sophisticated approach can be done by prescribing the function
Q along the field lines (this is equivalent to prescribing a variation of the
polytropic index Γ ). This will be discussed further in Sect. 3.

2 Physics of Jet Emitting Discs

In this section, I will briefly discuss all the relevant physical effects that have
to be covered in order to consistently describe Jet Emitting Discs or JEDs.

2.1 Mass Conservation

The disc accretion rate is defined as Ṁa = −2
∫ h
0 2πrρurdz. In a standard

accretion disc (hereafter SAD) Ṁa is a constant both in time and radius.
On the contrary, a JED displays mass loss at its surfaces so that Ṁa must
vary with the radius. This mass loss is parametrized by Ṁa(r) ∝ rξ where the
ejection index ξ > 0 is a measure of the disc ejection efficiency: the larger ξ the
larger the mass loss. The global mass conservation in a JED is Ṁa(re)−2Ṁj =
Ṁa(ri) where re and ri are respectively the outer and inner radii of the JED
and Ṁj is the mass flux from one side of the disc (Fig. 3). The ejection to
accretion rates ratio is 2Ṁj/Ṁa(re) � ξ ln(rJ/ri) and depends on both the
ejection index ξ and the radial extent of the JED (it will be shown later that
ξ is smaller than unity). The goal is of course to compute ξ as a function of
the disc physical conditions.

R

dS

Z

rire

dS

Σ
_ 

Σi
Σe

Σ+

Fig. 3. Sketch of the Jet Emitting Disc (JED) established between ri and re. The
surface of the jet is determined by the magnetic surface anchored on re. While the
inner radius ri is probably defined by some equilibrium with the stellar magneto-
sphere (see Sect. 4.6), the outer radius re is free (it depends mostly on the magnetic
flux available in the disc)
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2.2 Poloidal Field Diffusion

Let us assume a smooth flux function a (see Sect. 1.3) so that a(r, z) �
ao(r)(1 − z2/2l2) where l(r) is the magnetic flux vertical scale height. Then,
the bending of the poloidal field lines is measured at the equatorial plane
by the magnetic Reynolds number Rm = −rur/νm = r2/l2. Such a bending
is due to the interplay between advection by the accreting material and the
turbulent magnetic diffusivity νm. It has been prescribed with νm = αmVAh,
where VA = Bz/

√
μoρ is the Alfvén speed at the disc midplane [20].

Now, magneto-centrifugal acceleration requires field lines bent enough at
the disc surface, namely B+

r ≥ Bz (Blandford & Payne [5], quantities evalu-
ated at z = h are denoted with a superscript “+”). Since B+

r /Bz � Rmh/r
this implies Rm ≥ r/h.

2.3 Angular Momentum Conservation

The disc angular momentum can be transported by two means: (a) radi-
ally through a “viscous” turbulent torque which is probably triggered and
sustained by an MHD instability such as the magneto-rotational instabil-
ity (see Terquem’s contribution, [2] and references therein); (b) vertically by
the jets. The viscous torque writes Fvisc,φ ∼ −αvP/r where P is the total
(gas+radiation) pressure and αv the so-called Shakura-Sunyaev parameter.
The torque due to the jets writes Fmag,φ = JzBr − JrBz and its vertical
behavior strongly depends on the radial current density Jr. At the disc mid-
plane Fmag,φ = −JrBz ∼ B+

φ Bz/μoh and the disc angular momentum con-
servation reads

1 + Λ � −rur
νv

= Re = Rm

(
νm
νv

)
, (7)

where νv is the turbulent “viscosity” and Λ = Fmag,φ/Fvisc,φ. In a turbulent
medium, one usually assumes that all anomalous transport coefficients are of
the same magnitude so that νm ∼ νv. In that situation, one gets the following
consequences:
- In a SAD, there is no jets and Λ = 0. Then Rm � Re ∼ 1 and, indeed, field
lines are too straight for a magneto-centrifugal driving [36];
- In a JED, jets require Rm ∼ Re ≥ r/h and thus Λ ∼ r/h � 1: all the
angular momentum must then be carried away by the jets, which results in
an accretion velocity much larger than in a SAD. The “viscous” torque is
totally negligible (in contrast to what is often assumed, e.g. [42]).

This very important constraint (Λ ≥ r/h) can only be achieved if
−B+

φ Bz/μo ∼ P , that is with equipartition fields [21]. Let us introduce
here two important parameters: the disc magnetization μ = B2

z/μoP and
the magnetic shear q � −B+

φ /Bz. If qμ is not close to unity then no magneto-
centrifugally driven jets can be launched from accretion discs.
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2.4 Toroidal Field Induction

Magnetic driving of jets requires that the magnetic field starts to accelerate
material at the disc surface. Hence, a JED must provide a transition from
Fmag,φ < 0 at z = 0 to Fmag,φ > 0 at z = h and beyond. The only way to
achieve this is by allowing Jr to decrease on a disc scale height. The vertical
profile of Jr is provided by the induction (4) which, in a thin accretion disc,
writes (see [21])

η′mJr � η′oJo + r

∫ z

0

dzBp · ∇Ω −Bφuz , (8)

where η′oJo = η′mJr(z = 0). With no differential rotation, Jr would remain
constant and so would Fmag,φ (< 0). In order to make Jr decrease on a disc
scale height, the disc differential rotation term must balance the term η′oJo,
due to the Faraday’s induction law (the Barlow’s wheel current). This can
be done as long as −B+

φ /B
+
r ∼ 1/αm (with νm ∼ ν′m). Using the fact that

B+
r ≥ Bz, one gets a magnetic shear q ≥ 1/αm.

2.5 Disc Vertical Equilibrium

It is worthwhile to consider the following general equality

(J ∧ Bp) · Bφ = −(Jp ∧ Bφ) · Bp . (9)

When the magnetic torque (lhs) is negative, so must be the projection of
the Lorentz force on the poloidal field (rhs). Thus, deep within the disc, the
poloidal Lorentz force is directed outwardly and towards the disc midplane.
A quasi MHS equilibrium is therefore established with the balance between
the total (gas+radiation) pressure gradient on one side and the magnetic
compression due to the radial and toroidal field components and the gravity
on the other side. Now, as one goes up in z and the magnetic torque changes its
sign, the disc material starts to be azimuthally accelerated. Correspondingly,
the projection of the Lorentz force becomes also positive and helps to lift
material out of the disc.

This can be done in two ways (Fig. 4): (a) with a negative vertical com-
ponent of the Lorentz force but a large radial component; (b) with a positive
vertical component and a smaller negative radial component. Case (a) cor-
responds to a small mass flux (ξ < 1/2) where disc material must be lifted
against the magnetic compression by the sole effect of the (gas+radiation)
pressure gradient. Case (b) leads to a large mass flux (ξ > 1/2) because of
the magnetic pull due to the toroidal field pressure.

In fact, it can be shown analytically that only solutions with ξ < 1/2
can be stationary: solutions with large mass fluxes do not have enough power
to allow for super-Alfvénic jets [16]. This has an important consequence on
disc physics. Since B+

r ≥ Bz, the total pressure gradient can overcome the
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Fig. 4. Magnetic acceleration arises whenever the projection of the Lorentz force on
a poloidal field line becomes positive. This can be achieved in two ways, either with
a downward vertical magnetic compression or a strong outward pressure force due
to the toroidal field. The former leads to a small ejection efficiency and has current
lines coming out of the disc surface (Jz > 0) and entering at the inner radius. The
latter has a strong ejection efficiency with the current entering the disc at its surfaces
(Jz < 0). Only small ejection efficiencies allow for steady state solutions [16]

magnetic compression due to Br only if μ is not larger than unity. The same
constraint holds for the toroidal field which implies that αm must be of the
order of unity. Finally, using the fact that Λ ∼ r/h � 1 in a JED, one
obtains that μ cannot be too small. Thus, the parameter space for a JED is
μ ∼ q ∼ αm ∼ 1. Note also that a JED is thinner than a SAD because of the
additional magnetic compression [21, 56].

2.6 Disc Radial Equilibrium

The quasi MHS radial equilibrium leads to an angular velocity

Ω2 = Ω2
K

(
1 +

∂P/∂r

ρΩ2
Kr

− (J ∧ B)r
ρΩ2

Kr
+

u2
r

Ω2
Kr

2

∂ lnur
∂ ln r

)
. (10)

The deviation to the Keplerian rotation law ΩK =
√
GM/r3 due to the radial

(gas+radiation) pressure gradient is roughly of order (h/r)2 at each altitude.
This is because P scales with the density, which is not the case of the radial
magnetic tension. At the disc midplane, it causes a deviation which is of the
order ∼ μRm(h/r)2 ∼ h/r but increasing as 1/ρ. Thus, thin accretion discs
with h/r 	 1 will be mostly rotating at (sub-) Keplerian speeds but a prob-
lem arises when h ∼ r (as in ADAFs Narayan et al. [41] or in self-gravitating
discs, for instance). Indeed, it would imply a negative rhs at the disc surface
which certainly means that no steady-state accretion-ejection solution can be
found in that case. Note however that there is a priori no reason to ever have
h ∼ r in JEDs: they are colder (see below) and more squeezed (see above)
than a SAD.

2.7 Energy Budget

The global energy budget is obtained by applying the energy conservation
equation to the whole volume occupied by the JED. This equation writes
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Pacc = 2PMHD + 2Prad where

Pacc � GMṀa(re)
2ri

(11)

is the mechanical power liberated by the accreting material between re and
ri, PMHD =

∫
SMHD · dS is the flux through one disc surface of the MHD

Poynting vector SMHD = E ∧ B/μo � −ΩKrBφBp/μo. So, energy conser-
vation in a JED tells us that the available accretion power is shared between
a flux of electromagnetic energy powering the jets and radiation due to heat
dissipation within the disc (2Prad = Pdiss). This dissipation is due to the fact
that in a disc where turbulent magnetic diffusivity/resistivity and viscosity
are assumed, there is always some heat production. The simplest and crud-
est way to estimate this dissipation is using effective transport coefficients so
that it writes Pdiss =

∫
V dV (ηmJ2

φ+ η′mJ2
p + ηv(r∂Ω/∂r)2), namely Joule and

“viscous” heating.
Since the “viscous” torque is negligible with respect to the jet torque, only

a small fraction of the energy will be dissipated by viscosity. On the other
hand, the most interesting aspect of angular momentum removal by jets is
that the associated Joule dissipation implies also only a small fraction of the
available energy. As a consequence, most of the liberated accretion power goes
into the jets [20, 21]! Precisely, this can be written as

2PMHD

Pacc
� Λ

1 + Λ
and

2Prad
Pacc

� 1
1 + Λ

, (12)

where the ratio of the jet to the viscous torque Λ ∼ r/h � 1. This property
of JEDs has two important consequences: (i) the disc itself being weakly dis-
sipative, it may well be unobservable leading to the (wrong) idea that there
is no disc; (ii) a JED is cooler than a SAD fed with the same accretion rate,
which leads to a smaller aspect ratio h/r.

2.8 Links Between Jet and Disc Physics

The previous sections showed the crucial role played by the magnetic diffusiv-
ity within the turbulent JED. On the contrary, jets are best described by an
ideal MHD formalism (νm = ν′m = 0). This leads to the existence of 5 invari-
ants along each magnetic surface for polytropic jets2. The Bernoulli equation
is obtained by projecting the momentum (2) along Bp whereas the transfield
or Grad-Shafranov equation by projecting it along ∇a (perpendicular to Bp).
For more details see Tsinganos’ contribution (this volume).

MHD simulations of jets driven by accretion discs usually assume mag-
netic field lines rotating at Keplerian speeds and negligible enthalpy leaving

2 The magnetic surface rotation rate Ω(a), the mass to magnetic flux ratio η(a),
the total specific angular momentum L(a), energy E(a) and entropy K(a).
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therefore 3 free and independent boundary conditions to be specified at each
radius (see e.g. [1, 46] and references therein). These are often the density
ρ(r), vertical velocity uz(r) and magnetic field Bz(r) distributions. However,
the study of MAES shows that not all distributions allow for steady state jets:
there is a strong interplay between the disc and its jets. Such an interplay ap-
pears in the form of analytical links between jet invariants and parameters
describing the disc. These links can be found in Casse & Ferreira [8]; Ferreira
[17] and Ferreira & Casse [18]. Of all disc parameters the disc ejection effi-
ciency ξ plays a major role. Indeed, the knowledge of ξ allows to define almost
all jet properties. But in order to obtain the allowed values for ξ, the full set
of MHD equations must be solved.

3 A Glimpse on Self-similar Solutions

3.1 Mathematical Method

This is done by a separation method allowing to transform the set of partial
differential equations (PDE) into two sets of ordinary differential equations
(ODE) with singularities. Now, the gravitational potential in cylindrical co-
ordinates is

ΦG(r, z) = −GM

r

(
1 +

z2

r2

)−1/2

(13)

and it is expected to be the leading energy source and force in accretion discs.
Thus, if JEDs are settled on a large range of radii (so that we do not care about
the radial inner and outer boundaries), then the magnetic energy density has
to follow gravity in order to match it everywhere. It is therefore justified to
look for solutions of the form A(r, z) = GA(r)fA( zr ) for any physical quantity
A(r, z). Moreover, since gravity is a power law of the disc radius, we will use

the self-similar Ansatz A(r, z) = Ae

(
r
re

)αA

fA(x) where x = z/h(r) is our
self-similar variable with h ∝ r and re is the JED outer radius. Because all
quantities have power law dependencies, the resolution of the “radial” set of
equations is trivial and provides algebraic relations between all exponents.
The most general set of radial exponents allowing to take into account all
terms in the dynamical equations leads to the following important constraint

β =
3
4

+
ξ

2
, (14)

where the magnetic flux distribution writes a(r) ∝ rβ . As an illustration,
the solutions obtained by Blandford & Payne [5] used β = 3/4, i.e. ξ = 0.
In general, all self-similar models of disc driven jets not addressing the disc
dynamics use a magnetic field distribution inconsistent with the jet mass
loading [5, 12, 13, 44, 55].
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All quantities fA(x) are obtained by solving a system of ODE which can
be put into the form

⎛
⎝ . . .

M
. . .

⎞
⎠ ·

⎛
⎜⎝

df1
dx
...
dfn

dx

⎞
⎟⎠ =

⎛
⎝ . . .

P
. . .

⎞
⎠ ,

where M is a 8x8 matrix in resistive MHD regime, 6x6 in ideal MHD [21]. A
solution is therefore available whenever the matrix M is inversible, namely its
determinant is non-zero. Starting in resistive MHD regime, detM = 0 when-
ever V 2(V 2−C2

s ) = 0 where Cs is the sound speed and V ≡ u·n is the critical
velocity. The vector n = (ez− z

rer)(1+ z2

r2 ) provides the direction of propaga-
tion of the only waves consistent with an axisymmetric, self-similar description
(see Tsinganos’ contribution). Therefore, close to the disc, the critical velocity
is V � uz, whereas far from the disc it becomes V � ur (no critical point
in the azimuthal direction). Inside the resistive disc, the anomalous magnetic
resistivity produces such a dissipation that the magnetic force does not act
as a restoring force and the only relevant waves are sonic. Note also that the
equatorial plane where V = 0 is also a critical point (of nodal type since all
the solutions must pass through it). This introduces a small difficulty as one
must start the integration slightly above z = 0. In the ideal MHD region,
detM = 0 whenever (V 2 − V 2

SM )(V 2 − V 2
FM )(V 2 − V 2

An)2 = 0, namely when
the flow velocity V successively reaches the three phase speeds VSM , VAn and
VFM , corresponding respectively to the slow magnetosonic (SM), Alfvén and
fast magnetosonic (FM) waves. The phase speeds of the two magnetosonic
modes are V 2

SM,FM = 1
2

(
C2
s + V 2

At ∓
√

(C2
s + V 2

At)2 − 4C2
sV

2
An

)
where VAt is

the total Alfvén speed and VAn = V Ap · n. These expressions are slightly
modified by the self-similar ansatz. Note however that the condition V = VAn
is equivalent to up = VAp.

How do we proceed ? We fix the values of the four disc parameters
(ε = h/r, αm = νm/VAh, χm = νm/ν

′
m,Pm = νv/νm) and some guesses for

the disc magnetization μ and ejection efficiency ξ. Starting slightly above the
disc midplane where all quantities are now known, we propagate the resistive
set of equations using a Stoer-Burlisch solver for stiff equations. As x = z/h
increases, the flow reaches an ideal MHD regime and we shift to the corre-
sponding set of equations. Care must be taken in order to not introduce jumps
in the solution while doing so. The smooth crossing of the SM point can only
be done with a critical value for μ. We thus modify our initial guess until the
solution gets close enough to the critical point and jump across it (leapfrog
method). The same must be done for the Alfvén point which requires a criti-
cal value for ξ. Each time another guess for ξ is made, one has to find again
the corresponding critical value for μ (Fig. 5). The crossing of the last critical
point (FM) does not bring much more information on MAES physics and will
be discussed in Sect. 4.
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Fig. 5. Once material has left the resistive MHD zone, it is frozen in a particular field
line and encounters the three MHD critical points. The smooth transition between
resistive and ideal MHD regimes already selects the MAES parameter space (see
Sect. 2)

3.2 Typical Solutions

Only the most salient features of self-similar accretion-ejection solutions will
be discussed here (see [17] and [18]).

Cold Solutions

Cold solutions are defined here by an isothermal [16, 21] or adiabatic [8] energy
equation. Since the plasma pressure P is (h/r)2 smaller than the gravitational
energy density, such an energy equation ensures that the jet enthalpy is neg-
ligible with respect to gravity and magnetic fields [5].

Figure 6 shows the velocity components in both the JED and the jets as
a function of the self-similar variable x, along a magnetic surface for typical
solutions with h/r = 0.01 but different ejection efficiencies ξ. The disc surface
is located at x = 1 and the Alfvén point is reached at x ∼ 100 (zA ∼ rA).
Note that the disc vertical velocity is negative within the disc (material is
falling) and becomes positive only slightly before the point where the radial
velocity itself becomes positive. This happens roughly at the disc surface (see
bottom right panel) but still in the resistive MHD regime. The SM point is
crossed at x � 1.6. All velocity components are comparable at the Alfvén point
(this also holds for the magnetic field). Beyond that point, the plasma inertia
overcomes the magnetic tension and the magnetic surface opens tremendously.
This leads to the build-up of a sheared magnetic configuration (the ratio
|Bφ/Bp| increases). Note that the structure of the jet can be characterized
by two families of intertwined helices: the plasma streamlines (wound in the
same direction as the disc rotation) and the magnetic field lines (wound in
the opposite direction).

The magnetic acceleration is so efficient that all available MHD energy
is transferred into jet kinetic energy. From Bernoulli equation one gets an-
alytically the asymptotic jet velocity vj = Ωoro

√
2λ− 3 where Ωoro is the
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Fig. 6. Components of the jet poloidal velocity up and logarithm of the ratio
of the poloidal to the azimuthal velocity, measured along a magnetic surface for
ξ = 0.005 (solid line), 0.01 (dotted line), 0.02 (short-dashed line) and 0.05 (long-
dashed line) (ε = 10−2, αm = 1). For these typical cold solutions, the jet always
reaches its maximum velocity, mainly as a vertical component (the jet opening angle
is tan θ = Br/Bz = ur/uz). Inside the disc, matter is being accreted with a velocity
of order ε the Keplerian velocity Ωoro [16]

Keplerian speed at the jet footpoint ro and λ is the magnetic lever arm param-
eter [5]. This important jet parameter is actually related to the disc ejection
efficiency λ � 1 + 1/2ξ [16].

The disc parameter space has been thoroughly investigated for cold solu-
tions. It is very narrow with typical values ξ ∼ 0.01 and 0.1 < μ < 1, with
the following approximate scaling

ξ ∼ 0.1μ3 (15)

Although its validity holds only in a quite narrow interval, it shows that the
stronger the field the more mass is ejected. No solution has been found outside
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Fig. 7. Disc parameter space for isothermal jets [16] (adiabatic jets present no
qualitative difference, see Casse & Ferreira [8]). Left: disc magnetization μ as a
function of the disc ejection efficiency ξ for αm = 1 and various disc aspect ratios:
ε = h/r = 10−1 (solid line), 10−2 (dotted line), 10−3 (short-dashed line) and 7 10−4

(long-dashed line). The main effect of decreasing ε is to shift the range of allowed ξ
to higher values (but with a more limited range). Right: Influence of the turbulence
parameter αm on the disc magnetization μ for ε = 10−1 and various ejection effi-
ciencies: ξ = 0.004 (solid line), 0.005 (dotted line), 0.01 (short-dashed line) and 0.02
(long-dashed line). The minimum level of MHD turbulence is limited by the value of
the induced toroidal field allowing trans-Alfvénic jets, whereas the maximum level
has been arbitrarily fixed to unity

the range 0.0007 < ε = h/r < 0.3 and 0.3 < αm < 3 (Fig. 7). As pointed out
previously, there is no solution with a dominant viscous torque. All solutions
exhibit a high degree of collimation: actually, they even undergo recollimation
towards the axis which should result in a shock [16]. However, the subsequent
behaviour of the jet after that shock cannot be treated within self-similarity.

Warm Solutions

Warm solutions are obtained by solving (6) with a prescribed self-similar
function Q. Several physical effects can be simulated that way:

• Heat deposition at the disc surface only: the functionQ reaches a maximum
at the disc upper layers and then decreases rapidly (to recover adiabatic
jets). This mimics the effect of disc illumination by stellar UV and X
rays. Alternatively, this energy could arise from the dissipation of a small
fraction of the accretion energy, released in these layers by turbulence.
Remarkably the mass load can be significantly enhanced, with ejection
efficiencies up to ξ � 0.46 [9].

• Heating of the sub-Alfvénic regions: the function Q is non zero in these
regions only with subsequent adiabatic or polytropic jets. This mimics
the effect of some “coronal” heating as in the solar wind or, alternatively,
the pressure due to an inner flow (e.g. stellar or magnetospheric wind)
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ramming into the disc wind. Under some circumstances, the field lines are
forced to open much more than they would which results in a different
jet dynamical behaviour. In particular, self-similar jets can smoothly cross
the last modified FM critical point [18, 55]. See Fig. 8 for an example.

• Heating of the whole jet: this has not yet been done in the framework of
disc driven jets (but could easily be done by assuming a positive func-
tion Q everywhere in the jet). The reason is that such jets would not
be significantly modified by a warmer material (in contrast with stellar
winds). However, this is interesting for comparing models to observations.
Indeed, observed jets display temperatures of some 104 K that require
some heating mechanism(s) overcoming the huge cooling due to the jet
expansion (so called adiabatic cooling). It has been shown that ambipolar
diffusion is not enough and that some turbulent or shock heating must be
at work [25].

Fig. 8. Typical super-FM disc wind with ξ = 0.03, ε = 0.03 (h = εr). Density,
pressure and temperature are normalized to their value at the disc midplane, the
magnetic field components to Bz(z = 0) and the velocities to the Keplerian speed
at the anchoring radius ro. All magnetic field components remain comparable from
the disk surface to the Alfvén point. Note that the density profile inside the disc,
where both ur and uz are negative, is very different from a gaussian. Recollimation
takes place at z � 3 103ro. The lower right panel shows the various critical Mach
numbers (e.g. MSM = V/VSM) appearing in the self-similar equations. The usual
fast Mach number, n = up/uF M , becomes greater than unity much sooner than the
critical one MF M = V/VF M [18]
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4 Concluding Remarks

4.1 What’s Next?

The theory of steady jet production from Keplerian accretion discs is now com-
pleted. The physical conditions required to thermo-magnetically drive jets are
known, all relevant physical processes have been included in the framework of
mean field dynamics. Of course, there are still many unsolved questions:

(i) Can a sustained MHD turbulence maintain αm ∼ 1? This is a huge
constraint that deserves a thorough investigation.

(ii) Observations of T Tauri jets favor solutions with large ejection efficiencies
(ξ ∼ 0.1, Pesenti et al. [48]) requiring additional heating at the disc
surface. A theoretical assessment of this heating must be undertaken.

(iii) What is the stability of MAES? As will be seen below, there was some
claims that MAES were unstable but they were proven to be wrong.
On the other hand, jets do show time dependent features and one must
clearly go beyond steady state models. On that respect, numerical simu-
lations will be very helpful.

(iv) Disc driven winds do not treat the star-disc interaction. Understanding
the whole process of star formation requires now to address this cru-
cial issue as it pinpoints the problem of the stellar angular momentum
removal. This is further discussed below.

4.2 Biases of Self-similarity

Self-similarity allows to take into account all dynamical terms in the equations
and, as such, is the best means to solve in a self-consistent way the steady-state
accretion-ejection problem. However, there is a price to pay...

(i) The asymptotic behaviour is obviously biased since, for instance,
neither inner nor outer pressures can be taken into account. In fact, no realistic
“radial” boundary condition whatsoever can be dealt with. When modeling an
astrophysical jet, this implies for instance to truncate the solution at one inner
and outer radius. But there is another aspect, less known and more subtle.
Contopoulos & Lovelace [13] and Ostriker [44] obtained jet solutions within
the same self-similar framework but with different asymptotic behaviors. The
reason stems from the fact that they played around with β (flux function
a(r) ∝ rβ) as if it were a free function whereas the mathematical matching
with a Keplerian disc imposes its value. On the other hand, Pelletier & Pudritz
[47] obtained also recollimating non self-similar solutions, which indicates that
recollimation can indeed be physical and not entirely due to self-similarity. In
fact, it can be shown that recollimation of a jet launched from a Keplerian
accretion disc is possible whenever the radial profile of the ejection efficiency
ξ is smooth enough [16].
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(ii) The regularity conditions are to be imposed at the modified points
and not at the usual ones (see Tsinganos, this volume). However, these loca-
tions coincide for both the slow (SM) and the Alfvén points so that one can be
confident that there is no bias there. However, this is not so for the fast mag-
netosonic point. Self-similar trans-FM solutions require an Alfvén surface very
close to the disc [18], which can only be done by the action of a large pressure
in the sub-Alfvénic region. This is obviously a strong bias since it is not clear
whether such a pressure is indeed provided in astrophysical objects. Note how-
ever that crossing this modified FM point is more a theoretician satisfaction
than anything else: it gives no additional physical insight on the disc physics.

(iii) The local disc physical conditions as obtained with self-similar
solutions are not biased. The physical processes are well identified and un-
derstood and can be sometimes even obtained in a pure analytical manner.
They have been also confirmed by numerical experiments of Casse & Kep-
pens [10, 11]; Zanni et al. [57] (although one might object that numerical
experiments were actually tested with the help of semi-analytical solutions).
Figure 9 shows the result of such a simulation, where the jet mass loading is
computed in a consistent way.
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Fig. 9. Poloidal snapshot of an accretion disc driving self-confined jets. The grey
background is the density contours, the white lines are the magnetic field lines. The
outflow becomes super fast magnetosonic and the overall system reaches a quasi-
steady state similar to those obtained in the self-similar models of Ferreira et al.
Such a simulation was possible thanks to the inclusion of an anomalous magnetic
resistivity and an equipartition vertical magnetic field. Taken from [10]
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4.3 Is Accretion-ejection Unstable?

There has been some claims in the literature that the accretion-ejection pro-
cess itself was unstable [7, 37]. The idea was the following. Start from a steady
picture where the accretion velocity ur at the disc midplane is due to the jet
torque. It leads to a bending of the poloidal field lines described by an an-
gle θ with the vertical. Now imagine a small perturbation δur enhancing the
accretion velocity. Then, according to these authors, the field lines would be
more bent (θ increases) which would lead to lower the altitude of the sonic
point. Because the sonic point would be located deeper in the disc atmo-
sphere, where the density is higher, more mass would be henceforth ejected
which would then increase the total angular momentum carried away by the
jet. This means that the torque due to the jet is enhanced and will, in turn,
act to increase the accretion velocity. Thus, the accretion-ejection process is
inherently unstable.

The whole idea of this instability is based upon a crude approximation
of the disc vertical equilibrium. In fact, the magnetic field produces a strong
vertical compression so that, as θ is increased, less mass is being ejected, not
more. This has been pointed out by Königl & Wardle [33] and Königl [31] and
is indeed verified in the full MAES calculations reported here.

4.4 Magnetic Fields in Accretion Discs

The necessary condition for launching a self-collimated jet from a Keplerian
accretion disc is the presence of a large scale vertical magnetic field close to
equipartition [21], namely

Bz � 0.2
(
M

M�

)1/4
(

Ṁa

10−7M�/yr

)1/2 ( ro
1 AU

)−5/4+ξ/2

G , (16)

This value is far smaller than the one estimated from the interstellar magnetic
field, assuming either ideal MHD or B ∝ n1/2 [3, 4, 28]. This implies some
decoupling between the infalling/accreting material and the magnetic field in
order to get rid off this field. This issue is still under debate. The question is
therefore whether accretion discs can build up their own large scale magnetic
field (dynamo) or if they can drag in and amplify the interstellar magnetic
field? Although no large scale fields have been provided by a self-consistent
disc dynamo, this scenario cannot be excluded. But the latter scenario (ad-
vection) seems a bit more natural.

Let us assume that the disc material is always ionized enough to allow for
some coupling with the magnetic field (and use MHD). The outer parts of the
accretion disc will probably take the form of a SAD with no jets and almost
straight (Rm ∼ 1) field lines [36]. In that case, the steady-state solution of the
induction equation for the poloidal field is Bz ∝ r−Rm [23]. Hence, as a result
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of both advection and (turbulent) diffusion, the magnetic field in a SAD will
be a power-law of the radius.

Can a SAD transport Bz and allow for a transition to an inner JED?
This will be so if there is some transition radius (the outer JED radius re)
where μ = B2

z/μoP becomes of order unity. In a SAD the total pressure
writes P = ṀaΩ

2
Kh

6πνv
∝ r−3/2−δ with h(r) ∝ rδ. Since δ is always close to

unity in circumstellar discs, one gets μ ∝ r−ε with ε ∼ 1. Thus, it can be
readily seen that it is indeed reasonable to expect such a transition (com-
puting it is another matter), at least in some objects. The recent Zeeman
observation of a magnetic field in the accretion disc of FU Or supports this
conclusion [14].

4.5 X-winds and Disc Winds

The X-wind model [40, 50, 51, 52, 53] is a rich and complex model but, con-
trary to common belief, it is an accretion-powered wind launched from the
accretion disc. In practice, if the amount of magnetic flux threading the disc
is large so that re � ri, then one gets an “extended disc wind”, whereas if
the magnetic flux is tiny with re ≥ ri, one gets an “X-wind” (Fig. 10). The
dynamics and asymptotic behaviour of jets will differ strongly between an
extended disc wind and an X-wind and can thereby be tested against obser-
vations [19]. But this difference arises mainly because of the restricted range in
radii in the X-wind case, not because the underlying disc physics is different.
The basic phenomena described in Sect. 2 apply as well for the portion of
the disc launching the X-wind. Thus, equipartition fields are required, the
“viscous” torque is negligible with respect to the jet torque and the angular

SA

Extended disc−wind:   re >> ri(a) (b) X−wind:  re > ri

SA

Fig. 10. Two classes of stationary accretion powered disc winds. (a) “extended disc
winds”, when the magnetic flux threading the disc is large enough so that a large
radial extension of the whole accretion disc drives jets (re � ri). The Alfvén surface
SA is expected to adopt a rather conical shape. (b) “X-winds”, when the magnetic
flux is small and only a tiny disc region is driving jets. The Alfvén surface can be
either convex or concave, although the latter is probably more physical (since less
material can be ejected at the two extremes and the Alfvén point is rejected to
infinity). Adapted from Ferreira et al. [19]
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momentum carried away by the X-wind is exactly the same amount lost by the
accreting material. As a consequence, X-winds cannot take away any angular
momentum from the central star.

Published material on the dynamics of X-winds contains: (i) a scenario for
the origin of Bz (stellar) and the star-disc interaction (leading to the opening
of some magnetic field lines); (ii) the calculation of the sub-Alfvénic ideal
MHD jet (elliptic domain defined by prescribed boundary conditions); (iii) a
somewhat mysterious “interpolation”to a simple jet asymptotic solution. The
following questions remain therefore to be addressed:
(1) Can the disc afford the imposed mass flux and field geometry? Indeed,
the assumed ejection to accretion mass flux ratio of 1/3 from such a tiny
region is huge and would require a fantastic ejection efficiency (ξ of order
unity or larger). The calculations of JEDs showed that this is unfeasible in
a steady way. However, the huge magnetic field gradients required in the
X-wind launching region provide a significantly different situation. This has
never been analyzed.
(2) How good is the transfield equilibrium satisfied? There is no mathematical
procedure to find a solution of mixed type (elliptic-hyperbolic) PDEs when
the singular surfaces are unknown. The trick used for X-winds provides an
incomplete solution, but there is maybe some means to fulfill the transverse
equilibrium by using an iterative scheme. In any case, this important point is
missing in the current published material.

4.6 Magnetic Star-disc Interactions

Nowadays it seems accepted that a lot if not all young stars have a mag-
netospheric interaction with their circumstellar accretion disc (see Alencar’s
contribution, this volume). If one assumes that the disc is threaded by a large
scale magnetic field, then the question of how this field is connected to the
stellar field arises. This is a complex topic that requires the use of numerical
experiments but this will not be addressed here as this is the topic of the
5th JETSET school (see however [15, 35] and references therein). Only simple
aspects will be discussed here.

First ideas are always simple and so is the stellar magnetic field, assumed
up to now to be dipolar and axisymmetric (see Mohanty et al. 2006). We define
here the magnetopause as the radius rm below which all field lines threading
the disc are tied to the star whereas beyond rm, they are disconnected from
the star.

The case envisioned within the X-wind scenario assumes a stellar magnetic
moment anti-parallel to the disc magnetic field [52]. As a consequence, a neu-
tral surface (where B = 0) appears above each disc surface, illustrated by a
limiting poloidal field with a Y shape (Fig. 11). The other case, a stellar mag-
netic moment parallel to the disc magnetic field, has been proposed by Ferreira
et al. [22]. The two fields then cancel each other at the disc midplane, defining
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X−type InteractionY−type Interaction(a) (b)

Fig. 11. Two simple axisymmetric star-disc magnetospheric interactions. (a) “Y-
type” interaction obtained when the stellar magnetic moment is anti-parallel to the
disc magnetic field. A current sheet is formed at the interface between the open
stellar field and the disc field. Such a configuration cannot produce per se a wind.
(b) “X-type” configuration obtained when the stellar magnetic moment is parallel
to the disc magnetic field. A magnetic X-point is generated at the disc midplane
where the two fields cancel each other. Unsteady ejection (“ReX-winds”) can be
launched above this reconnection site. Adapted from Ferreira et al. [19]

a neutral line at a radius rX where reconnection takes place. This configura-
tion gives rise to “Reconnection X-winds” (hereafter ReX-winds) specifically
above this zone.

Accretion Curtains

The first question here is can these simple topologies allow for accretion be-
low3 rm? Disc material will accrete only if it looses angular momentum and
this depends on both turbulence and the magnetic torque due to the mag-
netosphere. The magnetosphere will try to make the disc corotate with the
protostar so the sign of the torque depends on their relative angular veloc-
ity. The corotation radius, rco = (GM/Ω2

∗)
1/3, is defined as the radius where

the stellar angular velocity Ω∗ is equal to the Keplerian one. This gives an
estimate of the real angular velocity of the disc (since the disc magnetic field
introduces already a deviation). Roughly speaking, if rm > rco the star rotates
faster than the disc and deposits its angular momentum, whereas if rm < rco,
the star rotates slower and thus spins down the disc. Note that rm denotes
roughly the radius where the stellar magnetic field becomes dynamically dom-
inant, namely μ > 1. Thus, unless a very efficient turbulent mechanism4 is
operating and transports radially the stellar angular momentum, no accretion
is possible when rm > rco (although such a “propeller” regime is favorable for
ejection).

3 Accretion is realized beyond rm by e.g. the jet torque within the JED and, farther
away in the SAD, by the turbulent “viscous” torque.

4 Note that it should be operating when μ > 1, while the magneto-rotational in-
stability is already quenched at μ ∼ 1 [2].
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As a consequence, both X-type and Y-type interactions allow for a mag-
netospheric accretion as long as rm < rco. It is interesting to note that both
configurations require an equatorial reconnection zone (interesting for sudden
energy dissipation and chondrules, Shu et al. [54], Gounelle et al. [26]). In
the case of a Y-type interaction, it arises because of the requirement that
the magnetospheric field makes an angle with the vertical large enough in
order to allow the disc material to flow inwards. This assumption implies a
magnetic neutral “belt” at the disc midplane (see Fig. 1 in Ostriker & Shu
[45]), but whose origin and dynamics were not discussed and remain therefore
major unsolved issues. In the case of an X-type interaction, the presence of
the magnetic neutral line is due to and maintained by the cancellation of the
two fields (see Fig. 11). The accreting disc material can cross the resistive
MHD region and is lifted vertically by the strong Lorentz force above the
reconnection site. The transition from an accretion disc to accretion curtains
can be quite smooth in that case.

Stellar Spin Down

The second question is the issue of the stellar angular momentum removal by
winds (see Matt & Pudritz [38] for more details and the necessity of winds). As
explained earlier, X-winds carry away the angular momentum of the accreting
disc material. Thus, such a configuration cannot brake down the protostar (as
initially claimed). On the contrary, the X-type configuration provides a very

Fig. 12. The ReX-wind configuration [22]. A MAES is established around a proto-
star whose magnetic moment is parallel to the disc magnetic field. This is a natural
situation if both fields (disc and stellar) have the same origin. Left: black solid
lines are streamlines, white dashed lines are contours of equal total velocity (mainly
rotation inside the disc) and the background color scale shows the density stratifi-
cation. The ReX-wind (arrows) would be confined and channeled by the outer disc
wind. Right: sketch of the magnetic configuration leading to Rex-winds and accre-
tion curtains around the magnetic neutral line at rX . Arrows show the expected
time-dependent plasma motion
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efficient means to do it [22]. The reason is the possibility to launch disc ma-
terial above the reconnection site. The scenario is the following (Fig. 12). A
stationary extended JED is settled in the innermost regions of the accretion
disc and provides open magnetic flux to the star. This magnetic field recon-
nects at rX with closed stellar field lines: the disc field contributes thereby
to transform closed magnetospheric flux into open flux. At the reconnection
site, the disc material is lifted vertically and loaded onto these newly opened
field lines, tied to the rotating star. Whenever rX > rco, the star is rotating
faster than the loaded material and it undergoes a strong magneto-centrifugal
acceleration. This gives rise to the so-called ReX-wind, whose energy and
angular momentum are those of the star. Using a toy-model for the mag-
netic interaction (namely mass, energy and angular momentum conservation

Fig. 13. ReX-winds are emitted at the star-disc interface with a stellar magnetic
field varying as B∗ ∝ r−n (modified dipole). Here, the self-consistent time evolution
of the disc accretion rate, protostellar period, mass and radius are shown as functions
of n for an ejection to accretion rate ratio f = 0.1 and magnetic lever am λ = 3
(see, Ferreira et al. [22] for more details). Solid line: n = 3, dashed : n = 3.41, dotted :
n = 3.87, dash-dotted : n = 4.4 and long-dashed : n = 5. The best solution (stellar
period of 8 days after ∼ 105 yrs) is obtained for a compressed dipole (dotted line).
The initial conditions are a Class 0 protostar of R∗,0 = 4Rsun, M∗,0 = 0.4Msun,
T∗ = 3000 K at break-up velocity and with Ṁa,0 = 10−5 Msunyr−1
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of the protostar) Ferreira et al. [22] showed that such winds could brake down
a contracting protostar (see Fig. 13) on time scales that are comparable to
the duration of the embedded phase (Class 0 and I sources). The protostar
was assumed to rotate initially at breakup speed and, after some 105 to 106

yrs, it has been spun down to 10% of it despite its contraction and mass
accretion.

ReX-winds seem therefore to offer a serious possibility to brake down pro-
tostars (to my knowledge, there is no other calculated model in the literature).
Note that ReX-winds are probably intermittent by nature because of the un-
avoidable radial drift of the reconnection site around the corotation radius
(there is no ReX-wind whenever rX < rco). Dynamically speaking, such an
unsteady “wind” should be better described as bullets flowing inside the hol-
low disc wind. Remarkably the basic features of X-type configurations remain
if the stellar dipole is inclined: one would observe in that case precessing bul-
lets channeled by the outer disc wind. Heavy numerical simulations will be
required to test and further analyze this scenario.
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Abstract. I present here some ideas on how jets from low mass stars may evolve
as the star evolves from class 0 to the main sequence through classes I, II, III.
Analytical models and simulations suggest that the ejection start very early in the
life of a low mass star from the edge of the disk. Then, the jet is progressively ejected
from a more central part of the system composed by the star and its accretion disk.
Once the disk itself evaporates, the jet becomes a mere wind from the star which
has reached the main sequence. This wind should be similar to the well known
solar wind. To illustrate this point, we show specific applications of meridionally
self-similar models to jets from T Tauris with a low mass accretion rate, as well
as for the solar wind. We also present numerical simulations of turbulent stellar
jets surrounded by a magnetized disk wind, which clearly show that the stellar jet
may be an essential ingredient in preventing too fast and too tight collimation of
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the disk jet. At this point, note that I shall call in the rest of the present review
“stellar jet”, the component of the wind originating from the star and its vicinity,
by opposition to the “disk wind” or “disk jet” that corresponds to the component
emerging from the disk and more specifically from the Keplerian disk.

The analytical solution can be further extended to the relativistic domain. The
same dichotomy seems to exist for extragalactic jets. While sub relativitic winds
from Seyferts may correspond to radial winds, radio loud jets are comparable to
YSO jets. Nevertheless the distinction between FRI and FRII jets may be more a
problem of environment and efficiency of the magnetic rotator as FRI jets evolve in
a rich external medium, while the opposite holds for FRII.

1 Introduction

1.1 Acceleration, Collimation and Source of the Jets

Basic of MHD wind theory is well explained in other lectures of this volume
(see in particular Tsinganos for the notations). We shall here recall various
results on stellar jet models.

The outflowing plasma is ruled by the usual three MHD equations, mass,
momentum and energy conservations combined with Maxwell equations and
Ohm’s law for an ideal flow of infinite conductivity. It has been suggested [14]
that these outflows may be formed simultaneously from the central star and
the surrounding disk. Of course the jet originating from the star is thermally
driven while the jet originating from a magnetized disk is more likely to be
magneto-centrifugally driven. In both cases the eventual collimation of the
wind into a jet may be of thermal origin because of the dense environment of
the molecular cloud, but is more likely of to be of magnetic origin. A sketch
is displayed in Fig. 1 to show the 3D structure of the outflowing plasma as
well as a projection in the poloidal/meridional plane. It shows in particular
that because of flux freezing, in steady, axisymmetric flows, streamlines and
fieldlines are roped on the same flux tubes of constant mass and magnetic
flux, respectively Ψ and A, such that in the poloidal or meridional plane,
the poloidal components of the velocity and the magnetic fields are parallel.
Besides the mass flux to magnetic flux ratio, ΨA = dΨ

dA , other quantities are
conserved along a given flux tube A = cst. These integrals are the total angular
momentum L, the corotation frequency Ω which is the angular velocity of the
magnetic footpoints anchored into the source, and the total specific energy E .

Various models have been put forward to explore the basics of MHD
acceleration and collimation of winds into jets either analytically or through
numerical simulations (see [4] and, in this volume, the lectures by Tsinganos,
Ferreira and Lery). Analytically, disk winds have been studied for a long time
in the past using the radially self-similar models extended from the original
Blandford & Payne (1982) model. More recently, meridionally self similar
models have been studied as they are the only way to study analytically the
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Fig. 1. Sketch of a magnetic flux tube emerging either from an accretion disk or the
central corona of a star or a black hole. If the system is steady and axisymmetric,
streamlines (V ) and field lines (B) are roped on the same flux tubes. The plasma is
accelerated and collimated further out

3D structure of axisymmetric winds emerging from the central star and the
surrounding inner disk [14, 16].

At the present time, the question of the source of the jet remains among the
unresolved problems though we have some hints. First, this source is probably
not unique in the sense that the different regions of the disk and the stellar
magnetosphere participate in launching the jet. Second, it probably evolves
during the whole evolution of the central star. It seems clear though that the
different parts of the accretion disk play an important role. In other words, at
different stages, the external part of the disk, its inner radii or the central star
itself are responsible for ejecting material. This evolution may be linked with
the various classes of objects from class 0 to class III and the main sequence.
This will be discussed later on. We shall first make a point on what analytical
models from stellar jets can tell on the collimation itself before proceeding to
the general evolution scenario.
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1.2 Criterion for the Collimation of Jets

In order to treat almost analytically the partial differential equations of the
MHD theory, we assume that there is a similarity in latitude such that if we
know the evolution along one streamline, we can deduce at each latitude the
evolution of all streamlines just by multiplying all quantities with a scaling
factor depending only on the colatitude. Thus the system reduces to a system
of ordinary equations with radius. The same is true for radially self similar
solutions for disk wind where all quantities scale with radius instead of co-
latitude and the ordinary equations are a set of equations for the colatitude
(see Tsinganos’ lecture in this volume). Alternatively, the jet may also emerge
from the connection between the disk and the star as suggested by Shu et al.,
1994 for X-wind models (see also [17, 18], and references therein for more
recent development of X-wind, in particular the calculation of the emission of
such winds).

Considering the collimation, Heyvaerts & Norman (1989) have first estab-
lished that for pure stellar outflows, the asymptotic shape of the jet could be
linked with the current distribution inside the jet. Thus, winds with vanish-
ing electric intensity and current density should become paraboloidal while
current density carrying jets should be cylindrical. Finally, jets enclosing a
non zero intensity but with null density current should become radial. These
conclusions however do not hold for flows with strong discontinuity and cur-
rent sheets or if they do not fill all space. In particular, the non polytropic
meridionally self similar flows discussed hereafter all solutions are carrying a
non zero current intensity despite the fact that they are either cylindrical or
radial. There is no contradiction with the previous theorems because for in-
stance, the solutions do not fill all space. In particular, cylindrical solutions are
surrounded by a disk wind. Radial solutions do have either a null velocity on
the last streamline connected to the star, which is in this case the asymptot-
ically equatorial line, or an equatorial current sheet (an electric discontinuity
disregarded in the previous analysis). Shang et al. (1998) also suggested that
in X-wind the formation of a very dense axial wind could produce an apparent
cylindrically collimated jet even though the real wind is only paraboloidal. It
is however not completely obvious if this can be done on very large distances
considering that X-wind models do not treat consistently the inner stellar
wind.

In the case of meridionally self-similar models of cosmical MHD outflows,
a rather general criterion for the collimation of winds into cylindrical jets
has been established [15]. According to this criterion, if there is an excess
of volumetric energy along a non polar streamline with respect to the axis,
the outflow collimates asymptotically into cylinders. This is quantified by the
parameter ε′,

ε′ =
ρ(r, A)Ẽ(A) − ρ(r, pole)Ẽ(pole)

ρ(r, A)L(A)Ω(A)
, (1)



Stellar Wind Models 213

which equals to the difference of converted energy Ẽ of a line of magnetic
flux A (i.e. the total energy once we have substracted the thermal content
that remains at infinity) compared to the polar line and normalized to the
energy of the magnetic rotator LΩ. We recall (see above) that L is the angular
momentum and Ω the corotation frequency of the streamline of magnetic flux
A. We use here spherical coordinates [r, θ, ϕ]. The parameter ε′ is positive for
collimated solutions and negative for non collimated winds. We notice that Ẽ
is the energy effectively used to accelerate and collimate the flow.

The parameter ε′ has two contributions, one thermal μ and another mag-
netic ε, thus generalizing the usual criterion for fast vs. slow magnetic rotators,
by taking into account thermal confinement as well,

ε′ ≡ μ+ ε , (2)

μ ∝ P (r, A) − P (r, pole)
P (r, pole)

, (3)

where P (r, A) is the pressure along the line of magnetic flux A and P (r, pole)
the pressure along the polar axis. Hence, μ measures the collimation due to
the pressure gradient and in these models it is proportional to the relative
variation of pressure across the outflow. When μ is positive (negative) the jet
is underpressured (overpressured respectively) at the base of the flow. The
magnetic parameter ε is

ε =
LΩ − ER,o +ΔE∗

G

LΩ
, (4)

where ER,o is the rotational energy that tends to decollimate the wind because
of the centrifugal force, and

ΔE∗
G = −GM

ro

[
1 − To(A)

To(pole)

]
, (5)

where G is the gravitational constant, M the mass of the star and To the
temperature at the base of the flow ro. The quantity ΔE∗

G in (5) corresponds
to the gravitational potential well which is not compensated by thermal accel-
eration and thus must be supplied by the magnetic rotator in order to allow
ejection. In other words, the parameter ε measures the quantity of energy
of the magnetic rotator which is left once we have substracted the part that
helps accelerating the flow. If there is an excess of such energy, the plasma
is magnetically collimated. Thus, a fast magnetic rotator (large LΩ) is not
necessarily an efficient magnetic rotator (ε > 0) if magnetocentrifugal
acceleration is important. Conversely a slow magnetic rotator (low LΩ as in
T Tauri stars) can be either efficient (ε > 0) or inefficient (ε < 0) depending
on the efficiency of thermal acceleration.

Efficient magnetic rotators are found if there is enough extended heating
around the polar axis or if the magnetic field is strong such that the extraction



214 C. Sauty

of Poynting flux in the magnetocentrifugal acceleration is not too strong.
In this case the wind collimate into a jet because of the toroidal magnetic
pinching as in T Tauris. Conversely, in inefficient magnetic rotators, the winds
either collimate thermally or remain conical, like the solar wind. This leads
us to the following section where we shall discuss a general scenario for the
evolution of the origin of the wind in young low mass stars (Fig. 2).

1.3 A Scenario for the Evolution of Jets

In the very early stage of class 0 objects, the jet may form before the star
itself is born, i.e. as soon as the protostellar core exists. In class 0 (a), it has
been suggested that the jet originates from the edge of the disk where there
is still free falling material [5]. This is somewhat not very different from the
idea of a recirculation around the proto stellar core suggested by Lery et al.
(see this volume).

Then from class I to class II, the ejection proceeds towards the center of
the disk, both radially self similar disk wind models and simulations seem to
confort this idea (see Ferreira et al. and Tsinganos et al. this volume). Those
models provide the right luminosity and mass loss rate (up to 10−7M�/yr)
provided that there is a small corona on top of the disk to launch the material
which is further accelerated by the conversion of Poynting flux into kinetic
energy as “a bead on a wire”. In fact up to the Alfvén radius the magnetic

a) Class 0 Jet

d) Class III and Main Sequence Winds

b) Class I and II Jet (high mass loss rate)

Protostellar
core

Accretion
Disk

Free
Fall

Star
Disk

Keplerian

Star
Keplerian
Disk

Star

X−Wind

c) Class II Jet (low mass loss rate)

Fig. 2. Sketch of the evolution of the source of the wind from class 0 (a), class I and
II with high ejection rates (b), class II with low mass loss rate (c) and main sequence.
We see that the ejection proceed from the external part towards the central star as
time goes
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field forces the plasma to corotate with the Keplerian frequency Ω and because
the accreted magnetic fieldlines are inclined, they act as inclined rigid wires
on which the plasma is ejected pushed by the centrifugal force that exists in
the corotating frame. This mechanism is also refered as magnetocentrifugal
driving.

During the phase of class II objects, the jet may originate from the inner 3
stellar radii of the inner disk with a small contribution (10% of the star). This
point will be illustrated more specifically in the rest of this review. At this
stage, the magnetocentrifugal driving still exist but compete with the thermal
driving. In fact the hot atmosphere around the star even if it is only a tenth of
the solar coronal temperature can efficiently push the gas by creating a strong
pressure gradient. Of course at this stage the mass loss rate is smaller, of the
order of 10−9M�/yr.

Eventually the disk evaporates and the star remains from class III (Weak
T Tauri stars) to the main sequence with a non collimated wind similar to
the famous solar wind with low mass loss rates, typically 10−14M�/yr. This
is one major advantage of meridionally self-similar models that they can also
reproduce the structure of the quiet solar wind as well as they mimic the
stellar jet core of T Tauri jets.

2 Stellar Jets and Winds

2.1 A Model for RY Tau and Low Ejection Mass Stars

As we mentioned, we will not discuss here the various models for disk winds
as it is well exposed elsewhere in this volume. Let us just recall that disk wind
models are well appropriated for early stage jets from class I and II. Most
of the acceleration and the collimation of these jets are of magnetic origin
by conversion of the Poynting flux. Nevertheless, the corona of the disk plays
a crucial role as it is the coronal temperature and extension that produce
enough mass loss rate and allow the solution to cross the all critical points
appearing in MHD theory (e.g. [6]).

Sauty & Tsinganos 1994 have proposed, using meridionally self similar
models, that for some T Tauris the inner part of the disk may play a crucial
role combined with the stellar inner jet. This is some how very close to the
X-wind models proposed by Shu et al. (see [18] and references there in) except
for one essential ingredient. In X-winds, the geometry of the magnetic field
at the connection between the stellar magnetosphere and the disk is a fan,
see Figs. 1 and 4 in Shu et al. (1994). Here it is a real X point (see Figs. 8,
10 and 11 in Sauty & Tsinganos, 1994), such that the ejection from the disk
is not concentrated in one single point but spread within the disk as in disk
wind models. Figure 4 displays two sketches of the magnetic topologies of the
two types of model. It clearly shows the differences between the X point of
self-similar models and the fan of X-winds. Furthermore, the fan topology of
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the X-wind is suspected to be highly unstable by several authors (e.g. [2], see
also Ferreira in this volume).

Using data from RY Tau we have constrained the parameters in the follow-
ing way using data from Verdugo & Gomez de Castro (2001) for this object.
For RY Tau we know the radius of the star (3 solar radii) and the rotation
period of 24 days. We also know the asymptotic speed of the jet (≈ 200 km/s)
and UV lines indicates the existence of a shock at 38 AU which is spherical
in shape. The density before and after the shock is known (≈ 103cm−3 and
104cm−3 respectively). Following the original paper, we assumed in the first
place that the UV shock corresponds to the first recollimation point in the
solution and we use it shape to estimate the location of maximum expansion
of the solution. Note that meridionally self-similar solutions reproduce usu-
ally oscillating jets as explained in Vlahakis & Tsinganos (1998). Using those
contrains the solution obtained is shown in Fig. 3a where we plot its three
dimensional structure (with a logarithmic scale along the jet axis). The solu-
tion reproduced the main features except for the high temperature (1 million
degrees!) in the asymptotic part. The high effective temperature may be ex-
plained if there is a lot of ram pressure or a magnetic pressure from Alfvén
waves. However by lowering slightly the initial pressure, we were able to ob-
tain a more satisfactory solution displayed in Fig. 3b. We have dropped the
idea that we may reproduce the shock at the recollimation point as the shock
is in any case not stationnary. Instead the jet that was previously both mag-
netically and thermally confined, still starts underpressured and thermally
confined but becomes overpressured around 100 AU. Thus, the asymptotic
collimation of this second solution has to be purely magnetic. Moreover the
effective temperature in this solution is quite reasonable and can be consid-
ered as the kinetic temperature. It decreases continuously from 105 K at the
stellar surface to 103 K asymptotically.

By rescaling the various parameters, we were able to reproduce, with the
same numerical solution, various jets from T Tauris. As a matter of fact, all
the solutions for T Tauri jets obtained seems to have a marginally efficient
magnetic rotators ε ≈ 0, which means that the toroidal magnetic field is
collimating the jet but the force is weak such that the transverse extension
of the jet (tens of AU) is very large compared to the radius of the underlying
source.

The main output of these solutions is that the mass loss rate in the jet is
in all cases around 10−9M� if the solution extends up to 3 stellar radii within
the disk. The stellar jet itself is only 10−10M�. Thus for T Tauri jets, the
stellar component cannot explain by itself the observed jets and the dominant
contribution seems always to come from the disk. However, in the case of low
mass loss rates, typical of the late stages of T Tauris, only the very inner part
of the disk contributes.

This leads to two conclusions. First the contribution of the disk is crucial
even in such low accreting mass objects such as RY Tau. Moreover, we may
have here a clue on the difference between jets from classical T Tauri Stars
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a) b)

c) d)

Fig. 3. We plot the morphology of two jet solutions for RY Tau. The solution
plotted in the poloidal plane in (a) and in 3D for (c) shows recollimation at 38 AU.
Parallely, the solution plotted projected in the poloidal plane in (b), and in 3D in
(d). In (b) and (d), the new solution is obtained lowering slightly the initial pressure
compared to (a) and (c). The recollimation point disappear. Instead the jet goes
from underpressured to overpressured around 100 AU. The vertical axis of (a) and
(b) is linear while it is logarithmic in (c) and (d), which explains the difference in
the apparent morphologies. In (a) and (b) the units are in Alfvén radius

(noted CTTS hereafter) and weak T Tauri Stars (noted WTTS hereafter). In
both cases we conjecture that the stellar jet is very similar. However as WTTS
are not connected to the disk, the total mass loss rate remains of the order
of 10−10M�, which is almost not detectable. Conversely, jets from CTTS like
RY Tau would have contributions from the inner disk which give a mass loss
rate 10 times higher. It would not be surprising if indeed the inner stellar jets
of CTTS and WTTS were similar, as we cannot see major differences between
the stars themselves, in terms of rotation and magnetic activity. Conversely
the contribution of the disk seems crucial to explain the difference in the total
mass loss rate observed.
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a) b)

Fig. 4. Sketch in the poloidal plane of two magnetic topologies. In (a) the mag-
netic configuration in meridional self-similar winds which connect naturally to the
configuration of disk wind models and in (b) the magnetic configuration of X-wind
models. Lines in bold show the main differences between the two topologies

2.2 An Hybrid Model for the Solar Wind

The same model can be applied to Ulysses data of the solar wind at minimum
[13]. The solution could not reproduce the high magnetic field measured at
one AU, despite the correct values at the solar surface (roughly 1 Gauss)
and the correct velocity (700 km/s) and density (a few particles per cm−3

obtained at one AU. The modelling has been improved [1] combining two
models. The same model is used from the solar surface up to the Alfvén
surface in order to reproduce the flaring streamlines of the fast solar wind
as shown in Fig. 5a). Beyond the Alfvén surface, a helicoidal solution is used
from the self similar model developed by Lima et al. (1991). Thus the geometry
of the wind is purely radial in the poloidal plane as shown in Fig. 5b. This
solution reproduces fairly well the dynamical and magnetic quantities both at
the solar surface and at 1 AU. As other models (kinetic ones or simulations) we

Fig. 5. Morphology in the poloidal plane of a model for the solar wind. Parameters
are contrained from Ulysses data at minimum. The model reproduces the flaring of
the lines up to the Alfvén radius. Beyond we use an helicoidal solution with radial
poloidal streamlines. In (a), we plot a zoom of the inner streamlines showing the
equatorial streamers, while in (b) we plot the overall structure at large distances.
The grey scale corresponds to density contours
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still have high temperatures for the protons. We may invoke ram pressure or
Alfvén waves to explain the effective temperature that drives the wind. It can
be shown that it is compatible with the data if the source of the acceleration
is of magnetic origin (Alfvén waves) below the Alfvén surface and of turbulent
origin beyond. At least the needed amplitude of the turbulent waves are of
the order of the average magnitude of the magnetic and velocity fields.

Note that for the solar wind, the magnetic rotator is highly inefficient
ε ≈ −50, which is not surprising. It probably indicates that, as the star
evolves and the magnetic field and the rotation decline, the magnetic efficiency
in collimating is decreasing, at least in the last stages of the stellar formation.
This goes also with a slowing down of the stellar magnetic braking.

3 Extensions of Stellar Jet Models

3.1 Towards Numerical Simulations

To go beyond analytical modelling, we may use numerical simulations.
Tsinganos & Bogovalov (2001) have shown that a stellar wind can be col-
limated by the surrounding disk wind. There the origin of the acceleration
of the stellar wind is not addressed as the stellar wind is a uniform super-
sonic outflow. Other numerical simulations have been performed using the
VAC code (Meliani et al. 2006b). Previous simulations with this code did not
include viscosity in the disk. The first step has been to include viscosity in the
disk besides the magnetic diffusivity. It turns out, from the various simulations
with different stellar mass loss rates, that the viscous transport of angular mo-
mentum in the disk remains negligible compared to the torque of the wind,
even for a magnetic Prandtl number of one. This is so because the disk wind
is very efficient in extracting angular momentum. The output obtained is not
very different if a stellar jet is included in the middle with a mass loss rate only
one percent of the total accreting mass (Fig. 6a) Here the simulation of Fig. 6,
includes both turbulent viscosity in the disk and in the stellar jet. It is used as
the source of the thermal driving of the inner stellar jet component. For higher
mass loss rates from the star, the stellar jet starts opening significantly the
disk wind to give a larger jet radius in better agreement with observations than
the previous simulations. As we see in Fig. 6, this can be more than a factor
of 2. As the lines bend more the magnetocentrifugal extraction from the disk
becomes more efficient and the removal of angular momentum also increases.

These simulations also suggest that indeed the inner jet may be merid-
ionaly self similar, while it has recently been shown that the disk wind can
remain radially self similar [7].

3.2 Relativistic Models

Meridionally self-similar models can also be extended to study relativistic
jets. Models for non rotating black holes, in a Schwarzschild metric have
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Fig. 6. We plot the morphology in the poloidal plane of a stellar jet surrounded by
an disk wind. In (a) the stellar mass loss rate is only 1% of the disk mass loss rate
(10−9M�/yr vs 10−7M�/yr) while both are comparable in (b) (10−7M�/yr). The
poloidal stream/fieldlines are in solid lines while the isocontours reflects the density
distribution

been constructed (Meliani et al., 2006a). Such solutions can apply to rela-
tivistic winds rotating at subrelativistic rotation frequency, emerging from a
hot corona around the central supermassive black hole (Fig. 1), which means
to describe the inner spine jet component and not the overall jet which is
better modelled by disk winds. However, this a very pedagogical exercice as
it gives some insight into the complicated classification of AGN jets (Fig. 7,
Urry & Padovani, 1995).

First of all, let us say that collimation criteria in terms of current distri-
bution remain [9]. In self similar models, the criterion for collimation is also
unchanged except for the introduction of the space curvature factor h of the
Schwarzschild metric.

ds2 = −h2c2dt2 +
1
h2

dr2 + r2d2θ + r2 sin2 θdϕ2 , (6)

where

h =

√
1 − 2GM•

c2r
=
√

1 − rG
r

, (7)

is the redshift factor induced by gravity at a distance r from the central
black hole of mass M•, expressed in terms of the Schwarzschild radius
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Fig. 7. Standard classification of AGN sources following Urry & Padovani, 1995.
The horizontal axis can be explained as a change in the inclinaison of the viewing
angle of the source with the line of sight. The vertical axis, as we suggest, may be
linked to the efficiency of the underlying magnetic rotator to collimate the flow

rG = 2GM•/c2. Note that the time line element or the lapse function is
usually denoted by h0 or α. In this review, we have simply used the symbol h.

Thus (4) giving the efficiency of the magnetic rotator is simply replaced
by,

ε =
ER,o + EPoynt.,o +ΔE∗

G

EMR
, (8)

where EMR = h2LΩ is again the energy of the magnetic rotator, EPoynt. =
−h"ΩBϕ/ΨA is the Poynting flux, Bϕ the toroidal magnetic field, ΨA the
mass to magnetic flux ratio, using cylindrical coordinates [", ϕ, z], and

ER,o =
E
c2
V 2
ϕ,o

2
, (9)

is the rotational energy per particle. It is proportional to the specific rotational
energy V 2

ϕ,o/2, with the factor E/c2 having the dimensions of a mass. We recall
that E is the total specific energy of the plasma. Finally, ΔE∗

G is a term similar



222 C. Sauty

to the nonrelativistic case where it measures the excess or the deficit on a non
polar streamline, compared to the polar one, of the gravitational energy per
unit mass which is not compensated by the thermal driving [12, 15]. As in the
classical case, ε measures the efficiency of the magnetic rotator to collimate
the flow. Thus if ε > 0 we have an Efficient Magnetic Rotator (EMR) where
magnetic collimation may dominate, while if ε < 0 we have an Inefficient
Magnetic Rotator (IMR) where collimation cannot be but of thermal origin.

In fact, as already seen in numerical simulations of stellar relativistic jets
[20], magnetic collimation of relativistic jets is harder to achieve because in
the observer frame, the ultrarelativistic jet appears to be heavier. Conversely,
relativistic jets are more efficiently thermally accelerated, because of space
curvature and because the relativistic temperatures are more efficient (Meliani
et al., 2004).

As displayed in Fig. 8, the solutions obtained are very similar to those for
T Tauri jets. We may compare Seyfert winds to the solar wind. There, the
efficiency of the magnetic rotator is so low that the wind remains uncollimated
and in fact it seems also subrelativistic with typical velocities around 30,000
km/s. Conversely, Fanaroff-Riley I jets (FRI) from radio-loud galaxies are
ultra-relativistic on the parsec scale but probably decelerate on larger scales.
This last effect may be due to the rich host galaxies where the jet is embed-
ded. Thus, the recollimated solutions correspond to decelerated ones with a
peak of the Lorentz factor around 10 and thermal confinement. Conversely
the collimated solutions without recollimation, correspond to a continuous

a) b)

Fig. 8. We plot two relativistic solutions. In (a) the solution corresponds to the spine
jet of a FRI, with a rich external medium. The jet is partially thermally confined
and at the recollimation point the flow slows down. This is similar to real FRI jets
where usually the kiloparsec scale jet is subrelativistic while the parsec scale jet is
relativistic. In (b) the non recollimating solution with a continous acceleration up to
relativistic asymptotic speed (with again Lorentz factors around 10) may correspond
to ultrarelativistic jets of FRII where the environment is poor and the collimation
has to be of magnetic origin
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acceleration with similar Lorentz factors and purely magnetic confinement,
as the jet becomes overpressured. This situation is closer to the situation of
FRII jets which are very powerfull, relativistic on all scales, and evolving in
a poor external medium.

Thus, there may be a strong analogy between YSO jets and AGN jets
though with a huge difference. The classification of AGN jets seems more
related to difference in the environment and the magnetization of the rotating
source, rather than due to a natural evolution from jets to winds as in young
stars.

4 Conclusions

Thus, as a conclusion, it could be worth to combine radially self similar mod-
els for the disk wind and meridionaly self similar ones for the stellar jet to
study analytically the interaction between the two component. The advantage
of such a construction is that for the moment being numerical simulations re-
mains at a high cost to be performed.

We have seen here that there are strong theoretical arguments to believe
that the ejection proceeds towards the center of the system disk+ star. There
are also observational evidences for that and this is discussed in other sections
of this book.

Last but not least, studying jets from young stars and winds from main
sequence stars can also help understanding jets on larger scales, as AGN jets.
The analogy is worth studying both analytically and numerically.
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